“Luther Allison’s guitar cries, and it’s tears are blue”

It has been a week since I discovered Luther Allison, it was last Sunday evening when I heard Bad News Is Coming (flac), his debut album on a big label from 1972. I have been progressively going CRAAAZY over that sound, but let me back up. It is difficult to describe that first listen. I guess everyone has to experience it their own way. For some it would take a little getting used to. But there is no way you wouldn’t have a reaction.

Some reviews from over at the Amazon page:

  • I don’t want to review this cd as much as I want to implore you, the person reading this, to treat yourself and buy it. Out of the 100’s of cd’s I’ve owned and listened to, this is the most soulfully smooth music I’ve heard. This album is an unknown classic. Allison’s voice rock’s, his guitar work stings, the piano is perfect. Track after track this cd is either perfectly sexy, painful, funky, or rocking. Why this guy wasn’t hugely popular is beyond me. Buy this cd and then buy it for your friends. They’ll love it too. Peace- Adam Milan.
  • Now THAT’S what I’m talkin’ about, kids. This is gutbucket, soulfunk, dirty electric blues at its best. Chicago blues guitarist Luther Allison made his debut with this 1972 release on Motown’s Gordy label. Allison’s fiery guitar playing and his rough and tumble vocals bring life to a set of blues standards mixed with two songs he co-wrote. The first seven tracks make up the album as it was originally released, but this excellent remaster/reissue adds four more, including the potent “It’s Been a Long Time”.  – Jack Baker
  • “Bad News Is Coming” was Luther Allison’s debut album and from the first track, (his version of Willie Dixon’s “Little Red Rooster”), he EXPLODES with an intensity that is refreshing every time I hear it. He belted out his vocals in a raspy, impassioned wail, and his guitar playing was just as searing. This should have been a smash, although the blues market was drying up by the time this was released in 1972 and it ultimately didn’t sell in big numbers. Luther Allison himself is quoted in the liner notes as saying that he got lost in the shuffle when Motown moved from Detroit to L.A. Luther Allison was an amazing guitarist and unfortunately remains underrated. Songs like his own “Raggedy and Dirty” are perfect examples of how he could play the blues over a funky groove and just sound plain DIRTY. I don’t know how else to describe it. He didn’t hold anything back on this album. Also notable is the piano playing of Paul White, who has some great solos on this one. If you are a fan of the blues and haven’t heard Luther Allison, this CD serves as a good introduction to this unsung performer. – B. Bowman.

You get the idea.

Amazon’s own succinct ‘Product description’ is:

One of the greatest modern electric blues albums of the 1970’s.
I have not been able to listen to anything else, and I it seems to sear my brain every time I hit play. Early morning, afternoons, late night, on the highway, in bed, on the balcony. I feel my sperm count increasing steadily with every play through. Rise in happiness and an irresistible desire to stop people in their tracks and tell them, ‘You will thank me, your children will thank me, your grandchildren will thank me. Listen to this. Don’t make an immediate judgement. Just listen.’
When I feel like this, I remember this banter between Hound Dog Taylor and the audience, at the beginning of a song,
Hound Dog Taylor : I’ve got it, I’ve got it, I’ve got it
Audience: WHAT?
Hound Dog Taylor: The Bluuues, man!
A Longer and more apt Description of the album we are talking about here:

Roots music wasn’t exactly a hot prospect in 1972, which might be why the blistering guitar-centered blues on Luther Allison’s debut record didn’t garner the respect it deserved at the time. Though it’s unfortunate that he’s no longer around to appreciate it, it’s good to see that Allison is finally being recognized for the Chicago West Side master that he was, as a single spin of Bad News Is Coming surely enough proves. Things get started with a hard-stompin’, guitar-squealin’ rendition of the classic Willie Dixon tune “Little Red Rooster,” followed up with the riff-rooted “Evil Is Going On,” also by Dixon. Another standout is the title track, a slow, moody piece with a perfectly bittersweet inflection. Then there’s the considerably upbeat version of “Dust My Broom,” which manages to dust off a hoary standard and make it sound brand-spanking-new, all while showing off guitar pyrotechnics worthy of Jimi Hendrix. This issue of Allison’s debut also includes some worthy tracks that weren’t on the original release. All four merit a listen, but particular attention should be paid to Allison’s take on Freddy King’s classic instrumental “The Stumble,” which also features some admirable piano courtesy of Paul White. –Genevieve Williams

See there are three main stages of Blues, the real early Blues with gospel, scratchy string, delta blues. Add the glam pre war 1920s diva Blues. Then there is the Chicago Blues. Willie Dixon, Muddy Waters, Howling Wolf, Sonny Boy Williamson. This is 1950s-60s. Lot happened in that late 60s era. Elvis came in around 1960 and sparked off Rock n Roll. The electric guitar sparked a whole new sound. English rockers started playing their versions of Chicago and Delta Blues. Blues Rock, a whole psychedelic world. But for discussion’s sake, let’s be back into the main stream of Blues. After the Chicago Blues were the modern interpreters – Freddie King, Jimi Hendrix, Stevie Ray Vaughan.

Even if you have heard through  (cursorily, of course) the whole set of Blues evolution, Luther Allison’s guitar would still surprise you. As Jean Cabot of Rock and Folk magazine says, admittedly about a different Luther album,

The primary value of this recording, his first live album, is to make one feel Luther Allison’s musical abilities, as well as the intensity and generosity of his live performances. You can also find the memories of the privileged moments – maybe a few seconds when you feel, when you know, that Luther shuts his eyes and opens his soul… At that moment, his guitar no longer speaks to you, it cries . and it’s tears are blue.” — Jean Cabot, Rock and Folk

From over on the Wikipedia page:
Luther Allison (August 17, 1939 – August 12, 1997) was an American blues guitarist. He was born in Widener, Arkansas and moved with his family, at age twelve, to Chicago in 1951.He taught himself guitar and began listening to blues extensively. Three years later he began hanging outside blues nightclubs with the hopes of being invited to perform. He played with Howlin’ Wolf’s band and backed James Cotton.
His big break came in 1957 when Howlin’ Wolf invited Allison to the stage. Freddie King took him under his wing and after King got his big record deal, Allison took over King’s house-band gig on Chicago’s west side. A well-received set at the 1969 Ann Arbor Blues Festival resulted in his being asked to perform there each of the next three years.He also toured nationwide and, in 1972, was signed to Motown Records, one of the few blues artists to do so.
Bad News is Coming


On an aside, the more I thought in terms of the evolution of Blues, and where Luther Allison would be in the scheme of things, the more I was reminded of the below paragraph from the excellent Richard Dawkins book The Ancestor’s Tale,

I believe that there are senses in which evolution may be said to be directional, progressive and even predictable. But progress is emphatically not the same thing as progress towards humanity, and we must live with a weak and unflattering sense of the predictable. The historian must beware of stringing together a narrative that seems, even to the smallest degree, to be homing in on a human climax.

A book in my possession (in the main a good book, so I shall not name and shame it) provides an example. It is comparing Homo habilis (a human species, probably ancestral to us) with its predecessors the australopithecines. What the book says is that Homo habilis was ‘considerably more evolved than the Australopithecines’. More evolved? What can this mean but that evolution is moving in some pre-specified direction? The book leaves us in no doubt of what the presumed direction is. ‘The first signs of a chin are apparent.’ ‘First’ encourages us to expect second and third signs, towards a ‘complete’ human chin. ‘The teeth start to resemble ours …’ As if those teeth were the way they were, not because it suited the habiline diet but because they were embarking upon the road towards becoming our teeth. The passage ends with a telltale remark about a later species of extinct human, Homo erectus:

Although their faces are still different from ours, they have a much more human look in their eyes. They are like sculptures in the making, ‘unfinished’ works.

In the making? Unfinished? Only with the unwisdom of hindsight. In excuse of that book it is probably true that, were we to meet a Homo erectus face to face, it might well look to our eyes like an unfinished sculpture in the making. But that is only because we are looking with human hindsight. A living creature is always in the business of surviving in its own environment. It is never unfinished – or, in another sense, it is always unfinished. So, presumably, are we.

The conceit of hindsight tempts us at other stages in our history. From our human point of view, the emergence of our remote fish ancestors from water to land was a momentous step, an evolutionary rite of passage. It was undertaken in the Devonian Period by lobe-finned fish a bit like modern lungfish. We look at fossils of the period with a pardonable yearning to gaze upon our forebears, and are seduced by a knowledge of what came later: drawn into seeing these Devonian fish as ‘half way’ towards becoming land animals; everything about them earnestly transitional, bound into an epic quest to invade the land and initiate the next big phase of evolution. That is not the way it was at the time. Those Devonian fish had a living to earn. They were not on a mission to evolve, not on a quest towards the distant future. An otherwise excellent book about vertebrate evolution contains the following sentence about fish which

ventured out of the water on to the land at the end of the Devonian Period and jumped the gap, so to speak, from one vertebrate class to another to become the first amphibians …

The ‘gap’ comes from hindsight. There was nothing resembling a gap at the time, and the ‘classes’ that we now recognise were no moreseparate, in those days, than two species. As we shall see again, jumping gaps is not what evolution does.

If you are interested, the rest of that fascinating introduction to the book is here – The Conceit of Hindsight.

Behavior of the Sexes : A mashup of Richard Dawkins and David Simon

An introduction is in order. Here is a mashup of two of my favorite authors, Richard Dawkins and David Simon. From two of my favorite books. The Selfish Gene by Dawkins and The Corner by Simon. The Selfish Gene is an iconic book, and Dawkins’ first. It is in one word, thrilling; once you get in on Dawkins’ train of thought, he carries you to fantastic places and with such a beautiful turn of phrase and such simple logic that one can’t help being thrilled. Dawkins is a Darwin fan, and his mission is to explain the lucidity, scientific solidity and aesthetic beauty of evolution. He did just that in a portion I have quoted earlier as Why are People. In the portion quoted here, he is talking about how could “male” and “female” behavior have developed. Also courtship strategies and domestic bliss. Read it for the expansion of mind.

The Corner is a remarkably different book. It is non-fiction, it is gonzo, and the scenario is a real geographical corner in a drug ravaged neighborhood in Baltimore. David Simon spent a year in the neighborhood, without judging, just observing. The result is this emotional minefield of a book that totally spent me. I have excerpted before from the book in The Paper Bag Solution, where I stumble over trying to explain why this is greatness right here. That this book right here could compete with Hell’s Angels for the best gonzo book ever. There are moments during the book where Simon is only observing, and there are others where he steps back and assimilates his thoughts. This excerpt here is one of the latter. He talks about sexual behavior of teenagers in Baltimore and government policy towards teenage mothers. He talks about why courtship rituals are always materialistic here, and why sex is easy. Read it to understand human behavior in trying environments.

This is going to be a fairly long post. If you are only going to read part of it, don’t read it. That is a necessary warning, as Dawkins would be the first to caution you, since context is quite an important element here with both these pieces of writing. It is essential to hold that spool of thought that these authors hand you, and let them logically unravel it till the end. They deserve that respect. 

This is also going to be a fairly indulgent post.

Should we then call the original replicator molecules ‘living’? Who cares? I might say to you ‘Darwin was the greatest man who has ever lived’, and you might say ‘No, Newton was’, but I hope we would not prolong the argument. The point is that no conclusion of substance would be affected whichever way our argument was resolved. The facts of the lives and achievements of Newton and Darwin remain totally unchanged whether we label them ‘great’ or not. Similarly, the story of the replicator molecules probably happened something like the way I am telling it, regardless of whether we choose to call them ‘living’. Human suffering has been caused because too many of us cannot grasp that words are only tools for our use, and that the mere presence in the dictionary of a word like ‘living’ does not mean it necessarily has to refer to something definite in the real world. Whether we call the early replicators living or not, they were the ancestors of life; they were our founding fathers. – Richard Dawkins, The Selfish Gene

I have kept the book The Selfish Gene open for the past two and a half months. As in, I have read through it, gone back to chapters, and specific points that I wanted to revisit time and again. For a little clarification. For that exact turn of phrase that Dawkins used. For relating to something else I thought. It is around this same time that I have undergone The Wire fever, absorbing up a couple of shows and two books by David Simon. In almost all the Wire posts I have put up on this blog so far, Dawkins has crept in. This has been a wholly unexpected but glorious One-Two combo. I can’t help thinking of the Dawkins book as theory and Simon’s books and show as simulation, though I am being unjust on both by that shallow example. Dawkins has written about as things are, a scientist’s observations upon naturally occurring phenomena. Simon’s work is no simulation either, it is an honest description of what he sees in Baltimore and his observations as a gonzo journalist.  Both describing reality. The content devoid of the observer describing it sounds unbelievable and yet by describing each as they see it, that content becomes contextual and logical and relatable (repeatable?).

While we are onto random connections in the head, I can’t help mentioning Hemingway’s notion of writing, further expanded radically by Hunter S. Thompson in Gonzo is that if a person writes about a scenario from an honest, personal view underlining his own contextual position, then the scenario being described – no matter how radical becomes understandable and relatable to the reader. The writing becomes independent of the person writing it, even though it is extremely personal writing. The reader’s brain decodes the context automatically if it has been honestly put in by the author, and eventually sees the scenario from the eyes of the observer, devoid of judgements.

Quickly on to the Mashup at hand. The first extract is Chapter 9 : Battle of the Sexes from Richard Dawkins’ first book, The Selfish Gene. The title is sensationalist and should not be paid much mind. In here, Dawkins talks about What it means to be male and female, evolutionary stable strategies of genes in male and female bodies, and discusses courtship rituals and strategies. It is fascinating to read, with the caveat that the spool of thought before this chapter has certified that where it says The genes want.., it doesn’t mean a conscious wanting or derive pleasure from getting, but just an explanation of tendencies in the population towards certain things (I shall write more about it later, not here).

To be mashed up with the above, the second extract is from the Spring section of David Simon’s second book The Corner (co-authored with Ed Burns). He talks about why Baltimore has the country’s highest rate of teenage pregnancies. This is pertinent because these are neighborhoods ravaged and destroyed by drugs and government/people apathy. No jobs, very high percentage of black teenagers either killed, jailed, or involved in the drug trade. In such a despairing future scenario, Baltimore has the country’s highest rate of teenage pregnancies. He explains why this seemingly contradicting sense of events stands true and makes sense. He talks about the conservative stand of trying to cut off welfare checks to such a population and how it would make no difference to this behavior.

In my head, these passages read very well together. And hence this mashup.


On to Richard Dawkins. Extract from The Selfish Gene.

Let us go right back to first principles

If there is conflict of interest between parents and children, who share 50 per cent of each others’ genes, how much more severe must be the conflict between mates, who are not related to each other? All that they have in common is a 50 per cent genetic shareholding in the same children. Since father and mother are both interested in the welfare of different halves of the same children, there may be some advantage for both of them in cooperating with each other in rearing those children. If one parent can get away with investing less than his or her fair share of costly resources in each child, however, he will be better off, since he will have more to spend on other children by other sexual partners, and so propagate more of his genes. Each partner can therefore be thought of as trying to exploit the other, trying to force the other one to invest more. Ideally, what an individual would ‘like’ (I don’t mean physically enjoy, although he might) would be to copulate with as many members of the opposite sex as possible, leaving the partner in each case to bring up the children. As we shall see, this state of affairs is achieved by the males of a number of species, but in other species the males are obliged to share an equal part of the burden of bringing up children. This view of sexual partnership, as a relationship of mutual mistrust and mutual exploitation, has been stressed especially by Trivers. It is a comparatively new one to ethologists. We had usually thought of sexual behaviour, copulation, and the courtship that precedes it, as essentially a cooperative venture undertaken for mutual benefit, or even for the good of the species!

Let us go right back to first principles, and inquire into the fundamental nature of maleness and femaleness. In Chapter 3 we discussed sexuality without stressing its basic asymmetry. We simply accepted that some animals are called male, and others female, without asking what these words really meant But what is the essence of maleness? What, at bottom, defines a female? We as mammals see the sexes defined by whole syndromes of characteristics — possession of a penis, bearing of the young, suckling by means of special milk glands, certain chromosomal features, and so on. These criteria for judging the sex of an individual are all very well for mammals but, for animals and plants generally, they are no more reliable than is the tendency to wear trousers as a criterion for judging human sex. In frogs, for instance, neither sex has a penis. Perhaps, then, the words male and female have no general meaning. They are, after all, only words, and if we do not find them helpful for describing frogs, we are quite at liberty to abandon them. We could arbitrarily divide frogs into Sex 1 and Sex 2 if we wished. However, there is one fundamental feature of the sexes which can be used to label males as males, and females as females, throughout animals and plants. This is that the sex cells or ‘gametes’ of males are much smaller and more numerous than the gametes of females. This is true whether we are dealing with animals or plants. One group of individuals has large sex cells, and it is convenient to use the word female for them. The other group, which it is convenient to call male, has small sex cells. The difference is especially pronounced in reptiles and in birds, where a single egg cell is big enough and nutritious enough to feed a developing baby for several weeks. Even in humans, where the egg is microscopic, it is still many times larger than the sperm. As we shall see, it is possible to interpret all the other differences between the sexes as stemming from this one basic difference.

In certain primitive organisms, for instance some fungi, maleness and femaleness do not occur, although sexual reproduction of a kind does. In the system known as isogamy the individuals are not distinguishable into two sexes. Anybody can mate with anybody else. There are not two different sorts of gametes — sperms and eggs — but all sex cells are the same, called isogametes. New individuals are formed by the fusion of two isogametes, each produced by meiotic division. If we have three isogametes, A, B, and C, A could fuse with B or C, B could fuse with A or C. The same is never true of normal sexual systems. If A is a sperm and it can fuse with B or C, then B and C must be eggs and B cannot fuse with C.

When two isogametes fuse, both contribute equal numbers of genes to the new individual, and they also contribute equal amounts of food reserves. Sperms and eggs too contribute equal numbers of genes, but eggs contribute far more in the way of food reserves: indeed, sperms make no contribution at all and are simply concerned with transporting their genes as fast as possible to an egg. At the moment of conception, therefore, the father has invested less than his fair share (i.e. 50 per cent) of resources in the offspring. Since each sperm is so tiny, a male can afford to make many millions of them every day. This means he is potentially able to beget a very large number of children in a very short period of time, using different females. This is only possible because each new embryo is endowed with adequate food by the mother in each case. This therefore places a limit on the number of children a female can have, but the number of children a male can have is virtually unlimited. Female exploitation begins here.

Parker and others showed how this asymmetry might have evolved from an originally isogamous state of affairs. In the days when all sex cells were interchangeable and of roughly the same size, there would have been some that just happened to be slightly bigger than others. In some respects a big isogamete would have an advantage over an average-sized one, because it would get its embryo off to a good start by giving it a large initial food supply. There might therefore have been an evolutionary trend towards larger gametes. But there was a catch. The evolution of isogametes that were larger than was strictly necessary would have opened the door to selfish exploitation. Individuals who produced smaller than average gametes could cash in, provided they could ensure that their small gametes fused with extra-big ones. This could be achieved by making the small ones more mobile, and able to seek out large ones actively. The advantage to an individual of producing small, rapidly moving gametes would be that he could afford to make a larger number of gametes, and therefore could potentially have more children. Natural selection favoured the production of sex cells that were small and that actively sought out big ones to fuse with. So we can think of two divergent sexual ‘strategies’ evolving. There was the large-investment or ‘honest’ strategy. This automatically opened the way for a small-investment exploitative strategy. Once the divergence between the two strategies had started, it would have continued in runaway fashion. Medium-sized intermediates would have been penalized, because they did not enjoy the advantages of either of the two more extreme strategies. The exploiters would have evolved smaller and smaller size, and faster mobility. The honest ones would have evolved larger and larger size, to compensate for the ever-smaller investment contributed by the exploiters, and they became immobile because they would always be actively chased by the exploiters anyway. Each honest one would ‘prefer’ to fuse with another honest one. But the selection pressure to lock out exploiters would have been weaker than the pressure on exploiters to duck under the barrier: the exploiters had more to lose, and they therefore won the evolutionary battle. The honest ones became eggs, and the exploiters became sperms.

Males, then, seem to be pretty worthless fellows, and on simple ‘good of the species’ grounds, we might expect that males would become less numerous than females. Since one male can theoretically produce enough sperms to service a harem of 100 females we might suppose that females should outnumber males in animal populations by 100 to 1. Other ways of putting this are that the male is more ‘expendable’, and the female more ‘valuable’ to the species. Of course, looked at from the point of view of the species as a whole, this is perfectly true. To take an extreme example, in one study of elephant seals, 4 per cent of the males accounted for 88 per cent of all the copulations observed. In this case, and in many others, there is a large surplus of bachelor males who probably never get a chance to copulate in their whole lives. But these extra males live otherwise normal lives, and they eat up the population’s food resources no less hungrily than other adults. From a ‘good of the species’ point of view this is horribly wasteful; the extra males might be regarded as social parasites. This is just one more example of the difficulties that the group selection theory gets into. The selfish gene theory, on the other hand, has no trouble in explaining the fact that the numbers of males and females tend to be equal, even when the males who actually reproduce may be a small fraction of the total number. The explanation was first offered by R. A. Fisher.

The problem of how many males and how many females are born is a special case of a problem in parental strategy. Just as we discussed the optimal family size for an individual parent trying to maximize her gene survival, we can also discuss the optimal sex ratio. Is it better to entrust your precious genes to sons or to daughters? Suppose a mother invested all her resources in sons, and therefore had none left to invest in daughters: would she on average contribute more to the gene pool of the future than a rival mother who invested in daughters? Do genes for preferring sons become more or less numerous than genes for preferring daughters? What Fisher showed is that under normal circumstances the stable sex ratio is 50:50. In order to see why, we must first know a little bit about the mechanics of sex determination.

In mammals, sex is determined genetically as follows. All eggs are capable of developing into either a male or a female. It is the sperms that carry the sex-determining chromosomes. Half the sperms produced by a man are female-producing, or X-sperms, and half are male-producing, or Y-sperms. The two sorts of sperms look alike. They differ with respect to one chromosome only. A gene for making a father have nothing but daughters could achieve its object by making him manufacture nothing but X-sperms. A gene for making a mother have nothing but daughters could work by making her secrete a selective spermicide, or by making her abort male embryos. What we seek is something equivalent to an evolutionarily stable strategy (ESS), although here, even more than in the chapter on aggression, strategy is just a figure of speech. An individual cannot literally choose the sex of his children. But genes for tending to have children of one sex or the other are possible. If we suppose that such genes, favouring unequal sex ratios, exist, are any of them likely to become more numerous in the gene pool than their rival alleles, which favour an equal sex ratio?

Suppose that in the elephant seals mentioned above, a mutant gene arose that tended to make parents have mostly daughters. Since there is no shortage of males in the population, the daughters would have no trouble finding mates, and the daughter-manufacturing gene could spread. The sex ratio in the population might then start to shift towards a surplus of females. From the point of view of the good of the species, this would be all right, because just a few males are quite capable of providing all the sperms needed for even a huge surplus of females, as we have seen. Superficially, therefore, we might expect the daughter-producing gene to go on spreading until the sex ratio was so unbalanced that the few remaining males, working flat out, could just manage. But now, think what an enormous genetic advantage is enjoyed by those few parents who have sons. Anyone who invests in a son has a very good chance of being the grandparent of hundreds of seals. Those who are producing nothing but daughters are assured of a safe few grandchildren, but this is nothing compared to the glorious genetic possibilities that open up before anyone specializing in sons. Therefore genes for producing sons will tend to become more numerous, and the pendulum will swing back.

For simplicity I have talked in terms of a pendulum swing. In practice the pendulum would never have been allowed to swing that far in the direction of female domination, because the pressure to have sons would have started to push it back as soon as the sex ratio became unequal. The strategy of producing equal numbers of sons and daughters is an evolutionarily stable strategy, in the sense that any gene for departing from it makes a net loss.

I have told the story in terms of numbers of sons versus numbers of daughters. This is to make it simple, but strictly it should be worked out in terms of parental investment, meaning all the food and other resources that a parent has to offer, measured in the way discussed in the previous chapter. Parents should invest equally in sons and daughters. This usually means they should have numerically as many sons as they have daughters. But there could be unequal sex ratios that were evolutionarily stable, provided correspondingly unequal amounts of resources were invested in sons and daughters. In the case of the elephant seals, a policy of having three times as many daughters as sons, but of making each son a supermale by investing three times as much food and other resources in him, could be stable. By investing more food in a son and making him big and strong, a parent might increase his chances of winning the supreme prize of a harem. But this is a special case. Normally the amount invested in each son will roughly equal the amount invested in each daughter, and the sex ratio, in terms of numbers, is usually one to one.

In its long journey down the generations therefore, an average gene will spend approximately half its time sitting in male bodies, and the other half sitting in female bodies. Some gene effects show themselves only in bodies of one sex. These are called sex-limited gene effects. A gene controlling penis-length expresses this effect only in male bodies, but it is carried about in female bodies too and may have some quite different effect on female bodies. There is no reason why a man should not inherit a tendency to develop a long penis from his mother.

In whichever of the two sorts of body it finds itself, we can expect a gene to make the best use of the opportunities offered by that sort of body. These opportunities may well differ according to whether the body is male or female. As a convenient approximation, we can once again assume that each individual body is a selfish machine, trying to do the best for all its genes. The best policy for such a selfish machine will often be one thing if it is male, and quite a different thing if it is female. For brevity, we shall again use the convention of thinking of the individual as though it had a conscious purpose. As before, we shall hold in the back of our mind that this is just a figure of speech. A body is really a machine blindly programmed by its selfish genes.

Consider again the mated pair with which we began the chapter. Both partners, as selfish machines, ‘want’ sons and daughters in equal numbers. To this extent they agree. Where they disagree is in who is going to bear the brunt of the cost of rearing each one of those children. Each individual wants as many surviving children as possible. The less he or she is obliged to invest in any one of those children, the more children he or she can have. The obvious way to achieve this desirable state of affairs is to induce your sexual partner to invest more than his or her fair share of resources in each child, leaving you free to have other children with other partners. This would be a desirable strategy for either sex, but it is more difficult for the female to achieve. Since she starts by investing more than the male, in the form of her large, food-rich egg, a mother is already at the moment of conception ‘committed’ to each child more deeply than the father is. She stands to lose more if the child dies than the father does. More to the point, she would have to invest more than the father in the future in order to bring a new substitute child up to the same level of development. If she tried the tactic of leaving the father holding the baby, while she went off with another male, the father might, at relatively small cost to himself, retaliate by abandoning the baby too. Therefore, at least in the early stages of child development, if any abandoning is going to be done, it is likely to be the father who abandons the mother rather than the other way around. Similarly, females can be expected to invest more in children than males, not only at the outset, but throughout development. So, in mammals for example, it is the female who incubates the foetus in her own body, the female who makes the milk to suckle it when it is born, the female who bears the brunt of the load of bringing it up and protecting it. The female sex is exploited, and the fundamental evolutionary basis for the exploitation is the fact that eggs are larger than sperms.

Of course in many species the father does work hard and faithfully at looking after the young. But even so, we must expect that there will normally be some evolutionary pressure on males to invest a little bit less in each child, and to try to have more children by different wives. By this I simply mean that there will be a tendency for genes that say ‘Body, if you are male leave your mate a little bit earlier than my rival allele would have you do, and look for another female’, to be successful in the gene pool. The extent to which this evolutionary pressure actually prevails in practice varies greatly from species to species. In many, for example in the birds of paradise, the female receives no help at all from any male, and she rears her children on her own. Other species such as kittiwakes form monogamous pair-bonds of exemplary fidelity, and both partners cooperate in the work of bringing up children. Here we must suppose that some evolutionary counter-pressure has been at work: there must be a penalty attached to the selfish mate-exploitation strategy as well as a benefit, and in kittiwakes the penalty outweighs the benefit. It will in any case only pay a father to desert his wife and child if the wife has a reasonable chance of rearing the child on her own.

Trivers has considered the possible courses of action open to a mother who has been deserted by her mate. Best of all for her would be to try to deceive another male into adopting her child, ‘thinking’ it is his own. This might not be too difficult if it is still a foetus, not yet born. Of course, while the child bears half her genes, it bears no genes at all from the gullible step-father. Natural selection would severely penalize such gullibility in males and indeed would favour males who took active steps to kill any potential step-children as soon as they mated with a new wife. This is very probably the explanation of the so-called Bruce effect: male mice secrete a chemical which when smelt by a pregnant female can cause her to abort. She only aborts if the smell is different from that of her former mate. In this way a male mouse destroys his potential step-children, and renders his new wife receptive to his own sexual advances. Ardrey, incidentally, sees the Bruce effect as a population control mechanism! A similar example is that of male lions, who, when newly arrived in a pride, sometimes murder existing cubs, presumably because these are not their own children.

A male can achieve the same result without necessarily killing step-children. He can enforce a period of prolonged courtship before he copulates with a female, driving away all other males who approach her, and preventing her from escaping. In this way he can wait and see whether she is harbouring any little step-children in her womb, and desert her if so. We shall see below a reason why a female might want a long ‘engagement’ period before copulation. Here we have a reason why a male might want one too. Provided he can isolate her from all contact with other males, it helps to avoid being the unwitting benefactor of another male’s children.

Assuming then that a deserted female cannot fool a new male into adopting her child, what else can she do? Much may depend on how old the child is. If it is only just conceived, it is true that she has invested the whole of one egg in it and perhaps more, but it may still pay her to abort it and find a new mate as quickly as possible. In these circumstances it would be to the mutual advantage both of her and of the potential new husband that she should abort — since we are assuming she has no hope of fooling him into adopting the child. This could explain why the Bruce effect works from the female’s point of view.

Another option open to a deserted female is to stick it out, and try and rear the child on her own. This will especially pay her if the child is already quite old. The older he is the more has already been invested in him, and the less it will take out of her to finish the job of rearing him. Even if he is still quite young, it might yet pay her to try to salvage something from her initial investment, even if she has to work twice as hard to feed the child, now that the male has gone. It is no comfort to her that the child contains half the male’s genes too, and that she could spite him by abandoning it. There is no point in spite for its own sake. The child carries half her genes, and the dilemma is now hers alone.

Paradoxically, a reasonable policy for a female who is in danger of being deserted might be to walk out on the male before he walks out on her. This could pay her, even if she has already invested more in the child than the male has. The unpleasant truth is that in some circumstances an advantage accrues to the partner who deserts first, whether it is the father or the mother. As Trivers puts it, the partner who is left behind is placed in a cruel bind. It is a rather horrible but very subtle argument. A parent may be expected to desert, the moment it is possible for him or her to say the following: ‘This child is now far enough developed that either of us could finish off rearing it on our own. Therefore it would pay me to desert now, provided I could be sure my partner would not desert as well. If I did desert now, my partner would do whatever is best for her/his genes. He/she would be forced into making a more drastic decision than I am making now, because I would have already left. My partner would “know” that if he/she left as well, the child would surely die. Therefore, assuming that my partner will take the decision that is best for his/her own selfish genes, I conclude that my own best course of action is to desert first. This is especially so, since my partner may be “thinking” along exactly the same lines, and may seize the initiative at any minute by deserting me!’ As always, the subjective soliloquy is intended for illustration only. The point is that genes for deserting first could be favourably selected simply because genes for deserting second would not be.

We have looked at some of the things that a female might do if she has been deserted by her mate. But these all have the air of making the best of a bad job. Is there anything a female can do to reduce the extent to which her mate exploits her in the first place? She has a strong card in her hand. She can refuse to copulate. She is in demand, in a seller’s market. This is because she brings the dowry of a large, nutritious egg. A male who successfully copulates gains a valuable food reserve for his offspring. The female is potentially in a position to drive a hard bargain before she copulates. Once she has copulated she has played her ace — her egg has been committed to the male. It is all very well to talk about driving hard bargains, but we know very well it is not really like that. Is there any realistic way in which something equivalent to driving a hard bargain could evolve by natural selection? I shall consider two main possibilities, called the domestic-bliss strategy, and the he-man strategy.

The simplest version of the domestic-bliss strategy is this. The female looks the males over, and tries to spot signs of fidelity and domesticity in advance. There is bound to be variation in the population of males in their predisposition to be faithful husbands. If females could recognize such qualities in advance, they could benefit themselves by choosing males possessing them. One way for a female to do this is to play hard to get for a long time, to be coy. Any male who is not patient enough to wait until the female eventually consents to copulate is not likely to be a good bet as a faithful husband. By insisting on a long engagement period, a female weeds out casual suitors, and only finally copulates with a male who has proved his qualities of fidelity and perseverance in advance. Feminine coyness is in fact very common among animals, and so are prolonged courtship or engagement periods. As we have already seen, a long engagement can also benefit a male where there is a danger of his being duped into caring for another male’s child.

Courtship rituals often include considerable pre-copulation investment by the male. The female may refuse to copulate until the male has built her a nest. Or the male may have to feed her quite substantial amounts of food. This, of course, is very good from the female’s point of view, but it also suggests another possible version of the domestic-bliss strategy. Could females force males to invest so heavily in their offspring before they allow copulation that it would no longer pay the males to desert after copulation? The idea is appealing. A male who waits for a coy female eventually to copulate with him is paying a cost: he is forgoing the chance to copulate with other females, and he is spending a lot of time and energy in courting her. By the time he is finally allowed to copulate with a particular female, he will inevitably be heavily ‘committed’ to her. There will be little temptation for him to desert her, if he knows that any future female he approaches will also procrastinate in the same manner before she will get down to business.

As I showed in a paper, there is a mistake in Trivers’s reasoning here. He thought that prior investment in itself committed an individual to future investment. This is fallacious economics. A business man should never say ‘I have already invested so much in the Concorde airliner (for instance) that I cannot afford to scrap it now.’ He should always ask instead whether it would pay him in the future, to cut his losses, and abandon the project now, even though he has already invested heavily in it. Similarly, it is no use a female forcing a male to invest heavily in her in the hope that this, on its own, will deter the male from subsequently deserting. This version of the domestic-bliss strategy depends upon one further crucial assumption. This is that a majority of the females can be relied upon to play the same game. If there are loose females in the population, prepared to welcome males who have deserted their wives, then it could pay a male to desert his wife, no matter how much he has already invested in her children.

Much therefore depends on how the majority of females behave. If we were allowed to think in terms of a conspiracy of females there would be no problem. But a conspiracy of females can no more evolve than the conspiracy of doves which we considered in Chapter 5. Instead, we must look for evolutionarily stable strategies. Let us take Maynard Smith’s method of analysing aggressive contests, and apply it to sex. It will be a little bit more complicated than the case of the hawks and doves, because we shall have two female strategies and two male strategies.

As in Maynard Smith’s studies, the word ‘strategy’ refers to a blind unconscious behaviour program. Our two female strategies will be called coy and fast, and the two male strategies will be called faithful and philanderer. The behavioural rules of the four types are as follows. Coy females will not copulate with a male until he has gone through a long and expensive courtship period lasting several weeks. Fast females will copulate immediately with anybody. Faithful males are prepared to go on courting for a long time, and after copulation they stay with the female and help her to rear the young. Philanderer males lose patience quickly if a female will not copulate with them straight away: they go off and look for another female; after copulation too they do not stay and act as good fathers, but go off in search of fresh females. As in the case of the hawks and doves, these are not the only possible strategies, but it is illuminating to study their fates nevertheless.

Like Maynard Smith, we shall use some arbitrary hypothetical values for the various costs and benefits. To be more general it can be done with algebraic symbols, but numbers are easier to understand. Suppose that the genetic pay-off gained by each parent when a child is reared successfully is +15 units. The cost of rearing one child, the cost of all its food, all the time spent looking after it, and all the risks taken on its behalf, is –20 units. The cost is expressed as negative, because it is ‘paid out’ by the parents. Also negative is the cost of wasting time in prolonged courtship. Let this cost be –3 units.

Imagine we have a population in which all the females are coy, and all the males are faithful. It is an ideal monogamous society. In each couple, the male and the female both get the same average pay-off. They get +15 for each child reared; they share the cost of rearing it (–20) equally between the two of them, an average of –10 each. They both pay the –3 point penalty for wasting time in prolonged courtship. The average pay-off for each is therefore +15 – 10 – 3 = +2.

Now suppose a single fast female enters the population. She does very well. She does not pay the cost of delay, because she does not indulge in prolonged courtship. Since all the males in the population are faithful, she can reckon on finding a good father for her children whoever she mates with. Her average pay-off per child is {152} +15 – 10 = +5. She is 3 units better off than her coy rivals. Therefore fast genes will start to spread.

If the success of fast females is so great that they come to predominate in the population, things will start to change in the male camp too. So far, faithful males have had a monopoly. But now if a philanderer male arises in the population, he starts to do better than his faithful rivals. In a population where all the females are fast, the pickings for a philanderer male are rich indeed. He gets the +15 points if a child is successfully reared, and he pays neither of the two costs. What this lack of cost mainly means to him is that he is free to go off and mate with new females. Each of his unfortunate wives struggles on alone with the child, paying the entire –20 point cost, although she does not pay anything for wasting time in courting. The net pay-off for a fast female when she encounters a philanderer male is +15 – 20 = –5; the pay-off to the philanderer himself is +15. In a population in which all the females are fast, philanderer genes will spread like wildfire.

If the philanderers increase so successfully that they come to dominate the male part of the population, the fast females will be in dire straits. Any coy female would have a strong advantage. If a coy female encounters a philanderer male, no business results. She insists on prolonged courtship; he refuses and goes off in search of another female. Neither partner pays the cost of wasting time. Neither gains anything either, since no child is produced. This gives a net pay-off of zero for a coy female in a population where all the males are philanderers. Zero may not seem much, but it is better than the –5 which is the average score for a fast female. Even if a fast female decided to leave her young after being deserted by a philanderer, she would still have paid the considerable cost of an egg. So, coy genes start to spread through the population again.

To complete the hypothetical cycle, when coy females increase in numbers so much that they predominate, the philanderer males, who had such an easy time with the fast females, start to feel the pinch. Female after female insists on a long and arduous courtship. The philanderers flit from female to female, and always the story is the same. The net pay-off for a philanderer male when all the females are coy is zero. Now if a single faithful male should turn up, he is the only one with whom the coy females will mate. His net pay-off is +2, better than that of the philanderers. So, faithful genes start to increase, and we come full circle.

As in the case of the aggression analysis, I have told the story as though it was an endless oscillation. But, as in that case, it can be shown that really there would be no oscillation. The system would converge to a stable state. If you do the sums, it turns out that a population in which 5/6 of the females are coy, and 5/8 of the males are faithful, is evolutionarily stable. This is, of course, just for the particular arbitrary numbers that we started out with, but it is easy to work out what the stable ratios would be for any other arbitrary assumptions.

As in Maynard Smith’s analyses, we do not have to think of there being two different sorts of male and two different sorts of female. The ESS could equally well be achieved if each male spends 5/8 of his time being faithful and the rest of his time philandering; and each female spends 5/6 of her time being coy and 1/6 of her time being fast. Whichever way we think of the ESS, what it means is this. Any tendency for members of either sex to deviate from their appropriate stable ratio will be penalized by a consequent change in the ratio of strategies of the other sex, which is, in turn, to the disadvantage of the original deviant. Therefore the ESS will be preserved.

We can conclude that it is certainly possible for a population consisting largely of coy females and faithful males to evolve. In these circumstances the domestic-bliss strategy for females really does seem to work. We do not have to think in terms of a conspiracy of coy females. Coyness can actually pay a female’s selfish genes.

There are various ways in which females can put this type of strategy into practice. I have already suggested that a female might refuse to copulate with a male who has not already built her a nest, or at least helped her to build a nest. It is indeed the case that in many monogamous birds copulation does not take place until after the nest is built. The effect of this is that at the moment of conception the male has invested a good deal more in the child than just his cheap sperms.

Demanding that a prospective mate should build a nest is one effective way for a female to trap him. It might be thought that almost anything that costs the male a great deal would do in theory, even if that cost is not directly paid in the form of benefit to the unborn children. If all females of a population forced males to do some difficult and costly deed, like slaying a dragon or climbing a mountain, before they would consent to copulate with them, they could in theory be reducing the temptation for the males to desert {154} after copulation. Any male tempted to desert his mate and try to spread more of his genes by another female, would be put off by the thought that he would have to kill another dragon. In practice, however, it is unlikely that females would impose such arbitrary tasks as dragon-killing, or Holy-Grail-seeking on their suitors. The reason is that a rival female who imposed a task no less arduous, but more useful to her and her children, would have an advantage over more romantically minded females who demanded a pointless labour of love. Building a nest may be less romantic than slaying a dragon or swimming the Hellespont, but it is much more useful.

Also useful to the female is the practice I have already mentioned of courtship feeding by the male. In birds this has usually been regarded as a kind of regression to juvenile behaviour on the part of the female. She begs from the male, using the same gestures as a young bird would use. It has been supposed that this is automatically attractive to the male, in the same way as a man finds a lisp or pouting lips attractive in an adult woman. The female bird at this time needs all the extra food she can get, for she is building up her reserves for the effort of manufacturing her enormous eggs. Courtship feeding by the male probably represents direct investment by him in the eggs themselves. It therefore has the effect of reducing the disparity between the two parents in their initial investment in the young.

Several insects and spiders also demonstrate the phenomenon of courtship feeding. Here an alternative interpretation has sometimes been only too obvious. Since, as in the case of the praying mantis, the male may be in danger of being eaten by the larger female, anything that he can do to reduce her appetite may be to his advantage. There is a macabre sense in which the unfortunate male mantis can be said to invest in his children. He is used as food to help make the eggs which will then be fertilized, posthumously, by his own stored sperms.

A female, playing the domestic-bliss strategy, who simply looks the males over and tries to recognize qualities of fidelity in advance, lays herself open to deception. Any male who can pass himself off as a good loyal domestic type, but who in reality is concealing a strong tendency towards desertion and unfaithfulness, could have a great advantage. As long as his deserted former wives have any chance of bringing up some of the children, the philanderer stands to pass on more genes than a rival male who is an honest husband and father. Genes for effective deception by males will tend to be favoured in the gene pool.

Conversely, natural selection will tend to favour females who become good at seeing through such deception. One way they can do this is to play especially hard to get when they are courted by a new male, but in successive breeding seasons to be increasingly ready to accept quickly the advances of last year’s mate. This will automatically penalize young males embarking on their first breeding season, whether they are deceivers or not. The brood of naive first year females would tend to contain a relatively high proportion of genes from unfaithful fathers, but faithful fathers have the advantage in the second and subsequent years of a mother’s life, for they do not have to go through the same prolonged energy-wasting and time-consuming courtship rituals. If the majority of individuals in a population are the children of experienced rather than naive mothers — a reasonable assumption in any long-lived species — genes for honest, good fatherhood will come to prevail in the gene pool.

For simplicity, I have talked as though a male were either purely honest or thoroughly deceitful. In reality it is more probable that all males, indeed all individuals, are a little bit deceitful, in that they are programmed to take advantage of opportunities to exploit their mates. Natural selection, by sharpening up the ability of each partner to detect dishonesty in the other, has kept large-scale deceit down to a fairly low level. Males have more to gain from dishonesty than females, and we must expect that, even in those species where males show considerable parental altruism, they will usually tend to do a bit less work than the females, and to be a bit more ready to abscond. In birds and mammals this is certainly normally the case.

There are species, however, in which the male actually does more work in caring for the children than the female does. Among birds and mammals these cases of paternal devotion are exceptionally rare, but they are common among fish. Why?(5) This is a challenge for the selfish gene theory which has puzzled me for a long time. An ingenious solution was recently suggested to me in a tutorial by Miss T. R. Carlisle. She makes use of Trivers’s ‘cruel bind’ idea, referred to above, as follows.

Many fish do not copulate, but instead simply spew out their sex cells into the water. Fertilization takes place in the open water, not inside the body of one of the partners. This is probably how sexual reproduction first began. Land animals like birds, mammals and reptiles, on the other hand, cannot afford this kind of external fertilization, because their sex cells are too vulnerable to drying-up. The gametes of one sex — the male, since sperms are mobile — are introduced into the wet interior of a member of the other sex — the female. So much is just fact. Now comes the idea. After copulation, the land-dwelling female is left in physical possession of the embryo. It is inside her body. Even if she lays the fertilized egg almost immediately, the male still has time to vanish, thereby forcing the female into Trivers’s ‘cruel bind’. The male is inevitably provided with an opportunity to take the prior decision to desert, closing the female’s options, and forcing her to decide whether to leave the young to certain death, or whether to stay with it and rear it. Therefore, maternal care is more common among land animals than paternal care.

But for fish and other water-dwelling animals things are very different. If the male does not physically introduce his sperms into the female’s body there is no necessary sense in which the female is left ‘holding the baby’. Either partner might make a quick getaway and leave the other one in possession of the newly fertilized eggs. But there is even a possible reason why it might often be the male who is most vulnerable to being deserted. It seems probable that an evolutionary battle will develop over who sheds their sex cells first. The partner who does so has the advantage that he or she can then leave the other one in possession of the new embryos. On the other hand, the partner who spawns first runs the risk that his prospective partner may subsequently fail to follow suit. Now the male is more vulnerable here, if only because sperms are lighter and more likely to diffuse than eggs. If a female spawns too early, i.e. before the male is ready, it will not greatly matter because the eggs, being relatively large and heavy, are likely to stay together as a coherent clutch for some time. Therefore a female fish can afford to take the ‘risk’ of spawning early. The male dare not take this risk, since if he spawns too early his sperms will have diffused away before the female is ready, and she will then not spawn herself, because it will not be worth her while to do so. Because of the diffusion problem, the male must wait until the female spawns, and then he must shed his sperms over the eggs. But she has had a precious few seconds in which to disappear, leaving the male in possession, and forcing him on to the horns of Trivers’s dilemma. So this theory neatly explains why paternal care is common in water but rare on dry land.

Leaving fish, I now turn to the other main female strategy, the he-man strategy. In species where this policy is adopted the females, in effect, resign themselves to getting no help from the father of their children, and go all-out for good genes instead. Once again they use their weapon of withholding copulation. They refuse to mate with just any male, but exercise the utmost care and discrimination before they will allow a male to copulate with them. Some males undoubtedly do contain a larger number of good genes than other males, genes that would benefit the survival prospects of both sons and daughters. If a female can somehow detect good genes in males, using externally visible clues, she can benefit her own genes by allying them with good paternal genes. To use our analogy of the rowing crews, a female can minimize the chance that her genes will be dragged down through getting into bad company. She can try to hand-pick good crew-mates for her own genes.

The chances are that most of the females will agree with each other on which are the best males, since they all have the same information to go on. Therefore these few lucky males will do most of the copulating. This they are quite capable of doing, since all they must give to each female is some cheap sperms. This is presumably what has happened in elephant seals and in birds of paradise. The females are allowing just a few males to get away with the ideal selfish-exploitation strategy which all males aspire to, but they are making sure that only the best males are allowed this luxury.

From the point of view of a female trying to pick good genes with which to ally her own, what is she looking for? One thing she wants is evidence of ability to survive. Obviously any potential mate who is courting her has proved his ability to survive at least into adulthood, but he has not necessarily proved that he can survive much longer. Quite a good policy for a female might be to go for old men. Whatever their shortcomings, they have at least proved they can survive, and she is likely to be allying her genes with genes for longevity. However, there is no point in ensuring that her children live long lives if they do not also give her lots of grandchildren. Longevity is not prima facie evidence of virility. Indeed a long-lived male may have survived precisely because he does not take risks in order to reproduce. A female who selects an old male is not necessarily going to have more descendants than a rival female who chooses a young one who shows some other evidence of good genes.

What other evidence? There are many possibilities. Perhaps strong muscles as evidence of ability to catch food, perhaps long legs {158} as evidence of ability to run away from predators. A female might benefit her genes by allying them with such traits, since they might be useful qualities in both her sons and her daughters. To begin with, then, we have to imagine females choosing males on the basis of perfectly genuine labels or indicators which tend to be evidence of good underlying genes. But now here is a very interesting point realized by Darwin, and clearly enunciated by Fisher. In a society where males compete with each other to be chosen as he-men by females, one of the best things a mother can do for her genes is to make a son who will turn out in his turn to be an attractive he-man. If she can ensure that her son is one of the fortunate few males who wins most of the copulations in the society when he grows up, she will have an enormous number of grandchildren. The result of this is that one of the most desirable qualities a male can have in the eyes of a female is, quite simply, sexual attractiveness itself. A female who mates with a super-attractive he-man is more likely to have sons who are attractive to females of the next generation, and who will make lots of grandchildren for her. Originally, then, females may be thought of as selecting males on the basis of obviously useful qualities like big muscles, but once such qualities became widely accepted as attractive among the females of the species, natural selection would continue to favour them simply because they were attractive. Extravagances such as the tails of male birds of paradise may therefore have evolved by a kind of unstable, runaway process. In the early days, a slightly longer tail than usual may have been selected by females as a desirable quality in males, perhaps because it betokened a fit and healthy constitution. A short tail on a male might have been an indicator of some vitamin deficiency — evidence of poor food-getting ability. Or perhaps short-tailed males were not very good at running away from predators, and so had had their tails bitten off. Notice that we don’t have to assume that the short tail was in itself genetically inherited, only that it served as an indicator of some genetic inferiority. Anyway, for whatever reason, let us suppose that females in the ancestral bird of paradise species preferentially went for males with longer than average tails. Provided there was some genetic contribution to the natural variation in male tail-length, this would in time cause the average tail-length of males in the population to increase. Females followed a simple rule: look all the males over, and go for the one with the longest tail. Any female who departed from this rule was penalized, even if tails had already become so long that they actually encumbered males possessing them. This was because any female who did not produce long-tailed sons had little chance of one of her sons being regarded as attractive. Like a fashion in women’s clothes, or in American car design, the trend toward longer tails took off and gathered its own momentum. It was stopped only when tails became so grotesquely long that their manifest disadvantages started to outweigh the advantage of sexual attractiveness.

This is a hard idea to swallow, and it has attracted its sceptics ever since Darwin first proposed it, under the name of sexual selection. One person who does not believe it is A. Zahavi, whose ‘Fox, fox’ theory we have already met. He puts forward his own maddeningly contrary ‘handicap principle’ as a rival explanation. He points out that the very fact that females are trying to select for good genes among males opens the door to deception by the males. Strong muscles may be a genuinely good quality for a female to select, but then what is to stop males from growing dummy muscles with no more real substance than human padded shoulders? If it costs a male less to grow false muscles than real ones, sexual selection should favour genes for producing false muscles. It will not be long, however, before counter-selection leads to the evolution of females capable of seeing through the deception. Zahavi’s basic premise is that false sexual advertisement will eventually be seen through by females. He therefore concludes that really successful males will be those who do not advertise falsely, those who palpably demonstrate that they are not deceiving. If it is strong muscles we are talking about, then males who merely assume the visual appearance of strong muscles will soon be detected by the females. But a male who demonstrates, by the equivalent of lifting weights or ostentatiously doing press-ups, that he really has strong muscles, will succeed in convincing the females. In other words Zahavi believes that a he-man must not only seem to be a good quality male: he must really be a good quality male, otherwise he will not be accepted as such by sceptical females. Displays will therefore evolve that only a genuine he-man is capable of doing.

So far so good. Now comes the part of Zahavi’s theory that really sticks in the throat. He suggests that the talis of birds of paradise and peacocks, the huge antlers of deer, and the other sexually-selected features which have always seemed paradoxical because they appear to be handicaps to their possessors, evolve precisely because they are {160} handicaps. A male bird with a long and cumbersome tail is showing off to females that he is such a strong he-man that he can survive in spite of his tail. Think of a woman watching two men run a race. If both arrive at the finishing post at the same time, but one has deliberately encumbered himself with a sack of coal on his back, the women will naturally draw the conclusion that the man with the burden is really the faster runner.

I do not believe this theory, although I am not quite so confident in my scepticism as I was when I first heard it. I pointed out then that the logical conclusion to it should be the evolution of males with only one leg and only one eye. Zahavi, who comes from Israel, instantly retorted: ‘Some of our best generals have only one eye!’ Nevertheless, the problem remains that the handicap theory seems to contain a basic contradiction. If the handicap is a genuine one — and it is of the essence of the theory that it has to be a genuine one — then the handicap itself will penalize the offspring just as surely as it may attract females. It is, in any case, important that the handicap must not be passed on to daughters.

If we rephrase the handicap theory in terms of genes, we have something like this. A gene that makes males develop a handicap, such as a long tail, becomes more numerous in the gene pool because females choose males who have handicaps. Females choose males who have handicaps, because genes that make females so choose also become frequent in the gene pool. This is because females with a taste for handicapped males will automatically tend to be selecting males with good genes in other respects, since those males have survived to adulthood in spite of the handicap. These good ‘other’ genes will benefit the bodies of the children, which therefore survive to propagate the genes for the handicap itself, and also the genes for choosing handicapped males. Provided the genes for the handicap itself exert their effect only in sons, just as the genes for a sexual preference for the handicap affect only daughters, the theory just might be made to work. So long as it is formulated only in words, we cannot be sure whether it will work or not. We get a better idea of how feasible such a theory is when it is rephrased in terms of a mathematical model. So far mathematical geneticists who have tried to make the handicap principle into a workable model have failed. This may be because it is not a workable principle, or it may be because they are not clever enough. One of them is Maynard Smith, and my hunch favours the former possibility.

If a male can demonstrate his superiority over other males in a way that does not involve deliberately handicapping himself, nobody would doubt that he could increase his genetic success in that way. Thus elephant seals win and hold on to their harems, not by being aesthetically attractive to females, but by the simple expedient of beating up any male who tries to move in on the harem. Harem holders tend to win these fights against would-be usurpers, if only for the obvious reason that that is why they are harem-holders. Usurpers do not often win fights, because if they were capable of winning they would have done so before! Any female who mates only with a harem holder is therefore allying her genes with a male who is strong enough to beat off successive challenges from the large surplus of desperate bachelor males. With luck her sons will inherit their father’s ability to hold a harem. In practice a female elephant seal does not have much option, because the harem-owner beats her up if she tries to stray. The principle remains, however, that females who choose to mate with males who win fights may benefit their genes by so doing. As we have seen, there are examples of females preferring to mate with males who hold territories and with males who have high status in the dominance hierarchy.

To sum up this chapter so far, the various different kinds of breeding system that we find among animals — monogamy, promiscuity, harems, and so on — can be understood in terms of conflicting interests between males and females. Individuals of either sex ‘want’ to maximize their total reproductive output during their lives. Because of a fundamental difference between the size and numbers of sperms and eggs, males are in general likely to be biased towards promiscuity and lack of paternal care. Females have two main available counter-ploys, which I have called the he-man and the domestic-bliss strategies. The ecological circumstances of a species will determine whether the females are biased towards one or the other of these counter-ploys, and will also determine how the males respond. In practice all intermediates between he-man and domestic-bliss are found and, as we have seen, there are cases in which the father does even more child-care than the mother. This book is not concerned with the details of particular animals species, so I will not discuss what might predispose a species towards one form of breeding system rather than another. Instead I will consider the differences that are commonly observed between males and females in general, and show how these may be interpreted. I shall therefore not be emphasizing those species in which the differences between the sexes are slight, these being in general the ones whose females have favoured the domestic-bliss strategy.

Firstly, it tends to be the males who go in for sexually attractive, gaudy colours, and the females who tend to be more drab. Individuals of both sexes want to avoid being eaten by predators, and there will be some evolutionary pressure on both sexes to be drably coloured. Bright colours attract predators no less than they attract sexual partners. In gene terms, this means that genes for bright colours are more likely to meet their end in the stomachs of predators than are genes for drab colours. On the other hand, genes for drab colours may be less likely than genes for bright colours to find themselves in the next generation, because drab individuals have difficulty in attracting a mate. There are therefore two conflicting selection pressures: predators tending to remove bright-colour genes from the gene pool, and sexual partners tending to remove genes for drabness. As in so many other cases, efficient survival machines can be regarded as a compromise between conflicting selection pressures. What interests us at the moment is that the optimal compromise for a male seems to be different from the optimal compromise for a female. This is of course fully compatible with our view of males as high-risk, high-reward gamblers. Because a male produces many millions of sperms to every egg produced by a female, sperms heavily outnumber eggs in the population. Any given egg is therefore much more likely to enter into sexual fusion than any given sperm is. Eggs are a relatively valuable resource, and therefore a female does not need to be so sexually attractive as a male does in order to ensure that her eggs are fertilized. A male is perfectly capable of siring all the children bom to a large population of females. Even if a male has a short life because his gaudy tail attracts predators, or gets tangled in the bushes, he may have fathered a very large number of children before he dies. An unattractive or drab male may live even as long as a female, but he has few children, and his genes are not passed on. What shall it profit a male if he shall gain the whole world, and lose his immortal genes?

Another common sexual difference is that females are more fussy than males about whom they mate with. One of the reasons for fussiness by an individual of either sex is the need to avoid mating with a member of another species. Such hybridizations are a bad thing for a variety of reasons. Sometimes, as in the case of a man copulating with a sheep, the copulation does not lead to an embryo being formed, so not much is lost. When more closely related species like horses and donkeys cross-breed, however, the cost, at least to the female partner, can be considerable. An embryo mule is likely to be formed and it then clutters up her womb for eleven months. It takes a large quantity of her total parental investment, not only in the form of food absorbed through the placenta, and then later in the form of milk, but above all in time which could have been spent in rearing other children. Then when the mule reaches adulthood it turns out to be sterile. This is presumably because, although horse chromosomes and donkey chromosomes are sufficiently similar to cooperate in the building of a good strong mule body, they are not similar enough to work together properly in meiosis. Whatever the exact reason, the very considerable investment by the mother in the rearing of a mule is totally wasted from the point of view of her genes. Female horses should be very, very careful that the individual they copulate with is another horse, and not a donkey. In gene terms, any horse gene that says ‘Body, if you are female, copulate with any old male, whether he is a donkey or a horse’, is a gene which may next find itself in the dead-end body of a mule, and the mother’s parental investment in that baby mule detracts heavily from her capacity to rear fertile horses. A male, on the other hand, has less to lose if he mates with a member of the wrong species, and, although he may have nothing to gain either, we should expect males to be less fussy in their choice of sexual partners. Where this has been looked at, it has been found to be true.

Even within a species, there may be reasons for fussiness. Incestuous mating, like hybridization, is likely to have damaging genetic consequences, in this case because lethal and semi-lethal recessive genes are brought out into the open. Once again, females have more to lose than males, since their investment in any particular child tends to be greater. Where incest taboos exist, we should expect females to be more rigid in their adherence to the taboos than males. If we assume that the older partner in an incestuous relationship is relatively likely to be the active initiator, we should expect that incestuous unions in which the male is older than the female should be more common than unions in which the female is older. For instance father/daughter incest should be commoner than mother/son. Brother/sister incest should be intermediate in commonness.

In general, males should tend to be more promiscuous than females. Since a female produces a limited number of eggs at a relatively slow rate, she has little to gain from having a large number of copulations with different males. A male on the other hand, who can produce millions of sperms every day, has everything to gain from as many promiscuous matings as he can snatch. Excess copulations may not actually cost a female much, other than a little lost time and energy, but they do not do her positive good. A male on the other hand can never get enough copulations with as many different females as possible: the word excess has no meaning for a male.

I have not explicitly talked about man but inevitably, when we think about evolutionary arguments such as those in this chapter, we cannot help reflecting about our own species and our own experience. Notions of females withholding copulation until a male shows some evidence of long-term fidelity may strike a familiar chord. This might suggest that human females play the domestic-bliss rather than the he-man strategy. Many human societies are indeed monogamous. In our own society, parental investment by both parents is large and not obviously unbalanced. Mothers certainly do more direct work for children than fathers do, but fathers often work hard in a more indirect sense to provide the material resources that are poured into the children. On the other hand, some human societies are promiscuous, and many are harem-based. What this astonishing variety suggests is that man’s way of life is largely determined by culture rather than by genes. However, it is still possible that human males in general have a tendency towards promiscuity, and females a tendency towards monogamy, as we would predict on evolutionary grounds. Which of these two tendencies wins in particular societies depends on details of cultural circumstance, just as in different animal species it depends on ecological details.

One feature of our own society that seems decidedly anomalous is the matter of sexual advertisement. As we have seen, it is strongly to be expected on evolutionary grounds that, where the sexes differ, it should be the males that advertise and the females that are drab. Modern western man is undoubtedly exceptional in this respect. It is of course true that some men dress flamboyantly and some women dress drably but, on average, there can be no doubt that in our society the equivalent of the peacock’s tail is exhibited by the female, not by the male. Women paint their faces and glue on false eyelashes. Apart from special cases, like actors, men do not. Women seem to be {165} interested in their own personal appearance and they are encouraged in this by their magazines and journals. Men’s magazines are less preoccupied with male sexual attractiveness, and a man who is unusually interested in his own dress and appearance is apt to arouse suspicion, both among men and among women. When a woman is described in conversation, it is quite likely that her sexual attractiveness, or lack of it, will be prominently mentioned. This is true, whether the speaker is a man or a woman. When a man is described, the adjectives used are much more likely to have nothing to do with sex.

Faced with these facts, a biologist would be forced to suspect that he was looking at a society in which females compete for males, rather than vice versa. In the case of birds of paradise, we decided that females are drab because they do not need to compete for males. Males are bright and ostentatious because females are in demand and can afford to be choosy. The reason female birds of paradise are in demand is that eggs are a more scarce resource than sperms. What has happened in modern western man? Has the male really become the sought-after sex, the one that is in demand, the sex that can afford to be choosy? If so, why?


On to David Simon (and Ed Burns). Extract from The Corner.

As Good as it gets

It isn’t about the welfare check. It never was.

It isn’t about sexual permissiveness, or personal morality, or failures in parenting, or lack of family planning. All of these are inherent in the disaster, but the purposefulness with which babies make babies in places like West Baltimore goes far beyond accident and chance, circumstance and misunderstanding. It’s about more than the sexual drives of adolescents, too, though that might be hard to believe in a country where sex alone is enough of an argument to make anyone do just about anything.

In Baltimore, a city with one of the highest teen pregnancy rates in the nation, the epidemic is, at its root, about human expectation, or more precisely, the absence of expectation.

On Fayette Street, the babies are born simply because they can be born, because life in this place cannot and will not be lived in the future tense. Given that fact, there is no reason to wait. The babies speak to these child-mothers and child-fathers, justify them, touch their hearts in a way that nothing else in their lives ever will. The government, the schools, the social workers, the public-service announcements wedged in between every black-family-in-the-burbs sitcom—all wail out the same righteous warning: Wait, don’t make the mistake, don ‘t squander every opportunity in life by having a child too young. But the children of Fayette Street look around them and wonder where an opportunity might actually be found. The platitude is precisely that, and no one is fooled.

From the moment that the children down here have any awareness at all, they are shaped by a process that demands that they shed all hope, that they cast off all but street-level ambition, learning to think and feel and breathe in ways that allow only for day-today survival. These children are not entirely unloved, or entirely unattended—even most of those growing up in the worst rowhouse hovels manage to reach adolescence in one piece, clothed and physically healthy. Fathering might be a lost concept, but on a rudimentary level, most of the mothers still manage some nurturing even in shooting galleries and crack dens. The love is there, but it makes itself felt only at odd moments, as an afterthought to the greater game of the corner.

True parenthood is more than love or intent or a set of learned skills; it’s all of that—practiced relentlessly. On Fayette Street, the men and women of the corner know what to do and sometimes, when the blast is there, they actually do it. But the game itself is relentless; when the blast is late, there’s no time for love’s expression.

Constancy becomes a luxury, so that a regular player at Fayette and Mount can love his son with the intensity of any father, yet when confronted by a choice between a tester line and a trip to the Bon Secours E.R. with a hurt child—well, there is no choice. Both his son’s arms are fractured from a bicycle fall, but Daddy ain’t trying to hear about medical emergencies. Damn if he ain’t a medical emergency all to himself. So the scene is that of a grown man backpedaling from his son toward the touts, mumbling a last-minute suggestion that some ointment might do the trick.

Day after day, the small promises that knit families together are frayed and unraveled: meals that aren’t prepared; weekend trips that never manage to find the right weekend; school clothes that aren’t there in time for September. Ultimately, the quiet moments that a parent and child ought always to have, the confidences and affection shared around a breakfast table, or at a bedside, or out on the rowhouse steps—these, too, become casualties of the corner. In time, it becomes clear to the children of Fayette Street that their look, their smile, even their unqualified love will never be enough to bring them what they need. Their cues go unnoticed by men and women obsessed.

So expectations change; tactics, too. The children learn that if they want to get fed, they better nag or whine: Ma, I’m hungry. Can I hold a piece of that there? Can I? Ma? In time, the begging becomes confrontational, demanding: I’m telling you. I can’t go to school ’cause I ain’t gonna wear these rags no more. Ma, you said you was gonna take me shopping at Westside. When you gonna take me shopping like you was sayin’?

The most important relationship in their lives is disappointing them, failing them, redefining them as less than they ought to be. This is the lesson that most carry from childhood: Even the most intimate relationship is essentially a construct of struggle and barter. Love is something to be spoken of, but rarely demonstrated.

Yet for the corner world, the lesson makes absolute sense. Children grow up in the Fayette Street rowhouses learning the manner by which human beings get and take what they need from one another. By adolescence, they understand that no one survives by carrying long-term expectations into any relationship, by giving of themselves, by risking anything valuable for the sake of that relationship. They watch their mothers scratch and claw their way through a string of failing, semi-hostile couplings—each running its predictable course, each fueled by genuine need and desire, yet built from such thin emotional material that it is less an act of human commitment than an exercise in planned obsolescence. They see their fathers—if, indeed, they see their fathers—hovering at the fringes, drifting in and out of the family as bit players, unable to provide and unwilling to commit. More likely than not, the men are on another path, caught up in new girlfriends, new addresses, new ambitions—all of it as fleeting and temporal as what came before.
With such grounding, the children venture into the streets, clumping into grade-school packs—boys with boys, girls with girls—and their play becomes savage as they crimp each other, honing the skills essential to the neighborhood. Their size, their shape, the quirks of their personalities—as with children anywhere, these things give them their early status, their reputation in the clique. But on Fayette Street, status exists only as it relates to the corner: This one can punch hardest, that one can shout loudest. This one can scheme and creep, that one is crazy and capable of anything. They each make their first pass at the game, and after an ugly failure or two, even the weakest manages to find a niche because that’s the timeless truth of the corner: It’s there for all of them, waiting and ready.

When the blood begins to warm, their status in the game is all that will matter, and what works on the corner will work with the girls. Sexual tribute will be paid to the hardest, the most daring, the craziest—but primarily to the teenaged slinger who at that moment carries the manicured bankroll.

For the corner boys and corner girls both, money becomes the centerpiece of a mating dance as ritualized as anything the middle-class mind might conjure. It begins with teenaged banter within the pack, with fourteen-and fifteen-year-old boys matching their wit and words with girls a year or two younger. The banter becomes flirtatious, and the flirtation ultimately produces the first, small transaction.

“Buy you a soda?”

If she’s willing, it won’t end with an Orange Slice. In the Victorian ideal, such conventions as love, fidelity, and personal commitment are the price to be paid, but those conventions can’t and don’t exist on Fayette Street. Instead, every embrace, every grope, every tryst is preceded and secured by a material exchange. For the girls, the process isn’t remotely connected to prostitution. It is, instead, about validation, about being able to have your personal worth displayed and proven with measurable evidence. It makes no difference that a young girl from Fayette and Fulton might genuinely like a boy who hangs at Baltimore and Gilmor. The geography of such a courtship demands that both play out their roles, that the boy give up some bills for his girl’s movie tickets and cheesesteaks and Nikes and jewelry, just as it demands that that girl part with her affections, measure for measure. Anything less from either party would constitute profound disrespect, so that in the eyes of the entire pack, the boy might easily be savaged as small-time and off-brand and the girl, if she tolerated such and still gave herself, might simply be branded a freak.

So the ritual brings the children of Fayette Street together, but they arrive burdened with the common awareness that nothing that passes between them can possibly last. They couple with little expectation that the relationship will succeed—if, indeed, any sexual relationship between fifteen-and fourteen-year-olds ever could—because no relationship they’ve ever known has ever succeeded. They find each other, copulate, and disengage; then they deconstruct the personal connections and move on. Anything beyond that would require real personal risk, a giving of the self that has nothing to do with the original terms of the transaction and can be justified only by a belief in tomorrow. To reveal one’s self to another is to lay bare weaknesses and vulnerabilites, and to do so on Fayette Street is to violate the rules of the corner.

For their parents—or, more likely, for their parents’ parents—legitimate birth and the nuclear family was at least a goal toward which you could strive. By contrast, this generation and much of the one before it have discarded even the pretense of that structure; whatever guilt haunted their fathers and grandfathers no longer nags at these young minds. On Fayette Street, the children have simply discarded the entire premise.

Shorn of all deeper meanings, what remains for this generation are the essentials: sex and babies. And because sex and babies, rather than fidelity and commitment, are the known terminus of any relationship, maturity has become utterly irrelevant. If validation requires only sexual capacity, then the mothers-to-be waiting on the plastic chairs at the obstetrics clinics at University Hospital and Johns Hopkins can be sixteen. Or fourteen. Or twelve.

Accident is not at all the word for it.

Most of these babies are very much wanted by the mothers and fathers alike. What better legacy for a sixteen-year-old slinger who expects to be dead or in prison by age twenty? What greater personal justification for a teenaged girl thirsting for the unequivocal love of another being? To outsiders, the babies are mistakes to be calculated in terms of social cost, as ward-of-the-state harbingers of yet another generation destined to spin through the cycle of poverty. But to the children suckled on the nihilism of the corner, such an outcome isn’t the sum of all fears. Poverty and failure is what they know; it’s what they accept for themselves every day and, by extension, what they accept for their children as well. For the child-fathers, the future is guns and vials and broken pavement; for the child-mothers, it is life as a twenty-two-year-old welfare mother, barefoot on the rowhouse steps, with the toddlers stumbling around her. And what, other than six years, is the substantive difference between a sixteen-year-old and a twenty-two-year-old welfare mother?

That the government pays something is helpful, of course. But the truth is that the government pays the mothers of Fayette Street only $234 a month and maybe $40 more for each new addition. Add food stamps and free formula from the WIC program and it’s enough to put Gerbers and Pampers in the grocery bag, but hardly enough to justify all the birthing. At this level, the conservative impulse to snatch at the purse seems beside the point: It’s not the lure of check-day that provokes these children to make children; something stronger than a couple hundred dollars is at issue, something that goes to the heart of the matter. Check or no check, the babies will come.

That we, as outsiders, know better is hardly the point. That we see lives stunted and consigned to poverty doesn’t matter because in the minds of these children, their lives were already consigned there. That we know the young fathers will give up and wander off means little, because on some level, the girls themselves know this too. They know from the get-go that the relationship is emotionally finite and they quickly reap what they can in status, gratification, and babies, then let the boys wander. On Fayette Street, it’s never about relationships, or boyfriends, or marriage, or living happily ever after.

Down here, a child is answer enough.

Once again, we know only what it is that works in our world, and so we talk welfare reform, devising middle-class solutions for a middleclass society. But, as they have with drugs and the drug trade itself, the men and women of the corner have judged our moral code useless under the circumstances. And they are right. As every fiend on Fayette Street knows that his place is at the point of a needle, so, too, does every teenager find some meaning in the obstetrics ward at University or the birthing rooms at Sinai. There, a girl acquires some womanhood; she is, for one dependent soul at least, the center of the universe. The father, a morbid and fatalistic boy, gives the infant his name and measures his doomed self to be one shade less mortal. If it didn’t do this much for them—if it was just about condoms, or abortion-on-demand, or abstinence and shame—then there might be a social strategy with some chance of success. Instead, these children have concluded that bringing about life—any life whatsoever—is a legitimate, plausible ambition in a world where plausible ambitions are hard to come by. This they can do.

To ask more from life on Fayette Street, to expect more from boyfriends, or wives, or parents—even to believe in more for one’s child—is to struggle against absurd odds, to ignore the living example of nearly everyone who came before you and who surrounds you now. Worse than that, to want more is to step beyond your own awareness—and that of everyone else on the pavement as well—about what’s possible. To do anything more than dream is to invite a crushing emotional defeat.

On Fayette Street, to struggle against the weight of circumstance—to try, in any sense—is not regarded as an act of strength. It is, instead, a public demonstration of vulnerability. Caring, expecting, hoping—these things bring only pain and contempt. Some carry that weight from one blast to the next, wrapping the pain around a syringe, transforming it from a thinking, emotional beast into something purely physical. For the fiends, the blast is the psychic safety net, the daily willingness to part with hope, ambition, and love. And for the yonger ones, for those not yet on the needle or the pipe, expectation is readily sacrificed for the leavings of the here and now; girls, props, weed, new Jordans, crew clothes, a little pocket money. Only for a rare few along Fayette Street—the churchgoers and the do-gooders, the home owners, the addicts who survived to reach recovery—does the hard business of living in the future go on. Is it the wise ones or the fools who shut down, who learn to avoid the uncommon thought, to break faith with possibility itself and take pleasure where they can?

Save for that rare handful, the children of Fayette Street employ their sexuality in a stripped-down facsimile of life. The boys limit themselves to the ambition of making it through the day without getting locked up, or stuck up, or shot down. They hope to be around long enough to see a son born, or maybe a daughter. Maybe scrape together the roll for a bassinet or a high chair, or failing that, a bag of Pampers once a week. The girls break it down to the singular, forlorn hope that the father-to-be will go to the clinic, maybe even show up at the hospital for the birth and then keep coming around for a while afterward. Maybe he’ll cover the cost of a crib or a stroller. And when the inevitable occurs, when he’s moved on to some new girl, the best that can be expected is some kind of vague alliance, some small connection to the life he created.

If things work out, he’ll show up once in a while to drag his son to the movies or down to Carroll Park for an afternoon. He’ll drift at the fringes, putting a $5 or a $10 bill into the kitty, just as she’ll feel the same cool allegiance now and then when he comes up short. They’ll manage that much, and because they’re from Fayette Street, they’ll count themselves lucky, knowing on some level that they have no right to ask more.

The end result of these adolescent pairings may seem predictable enough, but there is still something remarkable in the degree to which the participants embrace their roles. Knowing on one level that the relationship itself has no future, boys and girls along Fayette Street nonetheless take every opportunity to play at something greater, pretending to ideals and responsibilities that will ultimately be discarded. Catch up with any fifteen-year-old girl who is four months into a pregnancy, and you’re likely to hear about how the baby won’t change anything, how she plans to be a good and loving mother, how she still plans to finish high school and maybe go to college. Catch up to the sixteen-year-old father and you’re likely to hear that it’s time for him to grow up, to get a straight job somewhere and be a provider for his child. On one level, the boys and girls know how hollow these intentions are. They are painfully aware of how little is possible for them and their baby, but something deeper—some trace of an external standard, perhaps—still requires them to pretend.

In the weakest couplings, there is no time to play house. But in any relationship longer than a month or two, there can be seen all the requisite stages of serial monogamy, delivered in the most rapid-fire sequence imaginable. Infatuation, intimacy, a period of shared commitment and then disillusion and withdrawal—such is the stuff of months, years, even lifetimes in places other than West Baltimore. On Fayette Street, though, all of the relationships are subject to unrelenting pressure and all are expected to fail momentarily. As a result, the boys and girls have learned to couple and procreate, betray each other and depart with remarkable haste. They squeeze what validation, what drama they can from the coupling. But when the child is born, it proves to be an uneven exchange.

A corner boy hovers for a moment or two, then passes out Phillie blunts to his friends and declares his offspring right and fine. Then he goes back to the corner.

But the girl—she’ll be home in bed, the baby beside her, and she’ll take that phone call from a girlfriend, the one who says he was down there not half an hour ago and went off with some new girl from around the way. She’ll play it off, saying that he can do what he wants, that they haven’t been together for weeks now. Then she’ll get off the phone, go back to bed, and feel the sting.

Next time, she tells herself, she won’t be so weak and stupid. Next time, it’s going to cost more than some Harbor Park movie tickets and a trip to Mondawmin. More than some diapers and an off-brand stroller that lost a wheel after a week or two. Next time, she’ll keep her feelings out of it and just play him the way he’s playing her. It’s a small comfort that does nothing to take her any distance from the crying baby, the room, the rowhouse, the neighborhood. She lies there on the worn mattress of her childhood bed, loving her child but half-wishing for a moment that it had never happened or, maybe, that it had happened with some other boy.

For the girls—but never for the boys—life actually changes when the child arrives. They learn some, they grow some. Most will go back to the corners, leaving the infant to be raised by grandmothers and great-grandmothers. But some will come to understand that it’s not about a newborn’s unequivocal love, but about a mother offering the same night and day, day and night.

For those girls, this is the moment of reckoning: The boy is gone. The child is here. And finally, with the end of childhood and all the work and worry in the world staring her hard in the face, it might seem possible for a fifteen-or sixteen-year-old parent to see the bargain for what it is, straight, without fantasy or pretense. It might seem the perfect moment to wish for other outcomes, other choices.

But no, this is happening on Fayette Street.

The young mother lies in her bed, her baby asleep at her side, her hopes and fears proscribed by the world she knows, her future limited to questions about where the next bag of disposable diapers will be coming from.

This, for her, is as good as it gets.

Why are people?

The following is an extract from Richard Dawkins’ seminal book, The Selfish Gene. The title of this post is incidentally the name of the first chapter, while the text below is of the second chapter. Brushing such inconsistencies aside, the purpose here is to enjoy this beautiful piece of writing, without preamble or introduction (which hopefully shall come later, I shall be linking to this post often, I hope). The aim is to encourage readers to assimilate the most legible, sound, plausible and obvious theory of creation I have ever read.

The Selfish Gene, 1976

In the beginning was simplicity. It is difficult enough explaining how even a simple universe began. I take it as agreed that it would be even harder to explain the sudden springing up, fully armed, of complex order — life, or a being capable of creating life. Darwin’s theory of evolution by natural selection is satisfying because it shows us a way in which simplicity could change into complexity, how unordered atoms could group themselves into ever more complex patterns until they ended up manufacturing people. Darwin provides a solution, the only feasible one so far suggested, to the deep problem of our existence. I will try to explain the great theory in a more general way than is customary, beginning with the time before evolution itself began.

Darwin’s ‘survival of the fittest’ is really a special case of a more general law of survival of the stable. The universe is populated by stable things. A stable thing is a collection of atoms that is permanent enough or common enough to deserve a name. It may be a unique collection of atoms, such as the Matterhorn, that lasts long enough to be worth naming. Or it may be a class of entities, such as rain drops, that come into existence at a sufficiently high rate to deserve a collective name, even if any one of them is short-lived. The things that we see around us, and which we think of as needing explanation — rocks, galaxies, ocean waves — are all, to a greater or lesser extent, stable patterns of atoms. Soap bubbles tend to be spherical because this is a stable configuration for thin films filled with gas. In a spacecraft, water is also stable in spherical globules, but on earth, where there is gravity, the stable surface for standing water is flat and horizontal. Salt crystals tend to be cubes because this is a stable way of packing sodium and chloride ions together. In the sun the simplest atoms of all, hydrogen atoms, are fusing to form helium atoms, because in the conditions that prevail there the helium configuration is more stable. Other even more complex atoms are being formed in stars all over the universe, ever since soon after the ‘big bang’ which, according to the prevailing theory, initiated the universe. This is originally where the elements on our world came from.

Sometimes when atoms meet they link up together in chemical reaction to form molecules, which may be more or less stable. Such molecules can be very large. A crystal such as a diamond can be regarded as a single molecule, a proverbially stable one in this case, but also a very simple one since its internal atomic structure is endlessly repeated. In modern living organisms there are other large molecules which are highly complex, and their complexity shows itself on several levels. The haemoglobin of our blood is a typical protein molecule. It is built up from chains of smaller molecules, amino acids, each containing a few dozen atoms arranged in a precise pattern. In the haemoglobin molecule there are 574 amino acid molecules. These are arranged in four chains, which twist around each other to form a globular three-dimensional structure of bewildering complexity. A model of a haemoglobin molecule looks rather like a dense thorn bush. But unlike a real thorn bush it is not a haphazard approximate pattern but a definite invariant structure, identically repeated, with not a twig nor a twist out of place, over six thousand million million million times in an average human body. The precise thorn bush shape of a protein molecule such as haemoglobin is stable in the sense that two chains consisting of the same sequences of amino acids will tend, like two springs, to come to rest in exactly the same three-dimensional coiled pattern. Haemoglobin thorn bushes are springing into their ‘preferred’ shape in your body at a rate of about four hundred million million per second, and others are being destroyed at the same rate.

Haemoglobin is a modern molecule, used to illustrate the principle that atoms tend to fall into stable patterns. The point that is relevant here is that, before the coming of life on earth, some rudimentary evolution of molecules could have occurred by ordinary processes of physics and chemistry. There is no need to think of design or purpose or directedness. If a group of atoms in the presence of energy falls into a stable pattern it will tend to stay that way. The earliest form of natural selection was simply a selection of stable forms and a rejection of unstable ones. There is no mystery about this. It had to happen by definition.

From this, of course, it does not follow that you can explain the existence of entities as complex as man by exactly the same principles on their own. It is no good taking the right number of atoms and shaking them together with some external energy till they happen to fall into the right pattern, and out drops Adam! You may make a molecule consisting of a few dozen atoms like that, but a man consists of over a thousand million million million million atoms. To try to make a man, you would have to work at your biochemical cocktail-shaker for a period so long that the entire age of the universe would seem like an eye-blink, and even then you would not succeed. This is where Darwin’s theory, in its most general form, comes to the rescue. Darwin’s theory takes over from where the story of the slow building up of molecules leaves off.

The account of the origin of life that I shall give is necessarily speculative; by definition, nobody was around to see what happened. There are a number of rival theories, but they all have certain features in common. The simplified account I shall give is probably not too far from the truth.

We do not know what chemical raw materials were abundant on earth before the coming of life, but among the plausible possibilities are water, carbon dioxide, methane, and ammonia: all simple compounds known to be present on at least some of the other planets in our solar system. Chemists have tried to imitate the chemical conditions of the young earth. They have put these simple substances in a flask and supplied a source of energy such as ultraviolet light or electric sparks — artificial simulation of primordial lightning. After a few weeks of this, something interesting is usually found inside the flask: a weak brown soup containing a large number of molecules more complex than the ones originally put in. In particular, amino acids have been found — the building blocks of proteins, one of the two great classes of biological molecules. Before these experiments were done, naturally-occurring amino acids would have been thought of as diagnostic of the presence of life. If they had been detected on, say Mars, life on that planet would have seemed a near certainty. Now, however, their existence need imply only the presence of a few simple gases in the atmosphere and some volcanoes, sunlight, or thundery weather. More recently, laboratory simulations of the chemical conditions of earth before the coming of life have yielded organic substances called purines and pyrimidines. These are building blocks of the genetic molecule, DNA itself.

Processes analogous to these must have given rise to the ‘primeval soup’ which biologists and chemists believe constituted the seas some three to four thousand million years ago. The organic substances became locally concentrated, perhaps in drying scum round the shores, or in tiny suspended droplets. Under the further influence of energy such as ultraviolet light from the sun, they combined into larger molecules. Nowadays large organic molecules would not last long enough to be noticed: they would be quickly absorbed and broken down by bacteria or other living creatures. But bacteria and the rest of us are latecomers, and in those days large organic molecules could drift unmolested through the thickening broth.

At some point a particularly remarkable molecule was formed by accident. We will call it the Replicator. It may not necessarily have been the biggest or the most complex molecule around, but it had the extraordinary property of being able to create copies of itself. This may seem a very unlikely sort of accident to happen. So it was. It was exceedingly improbable. In the lifetime of a man, things that are that improbable can be treated for practical purposes as impossible. That is why you will never win a big prize on the football pools. But in our human estimates of what is probable and what is not, we are not used to dealing in hundreds of millions of years. If you filled in pools coupons every week for a hundred million years you would very likely win several jackpots.

Actually a molecule that makes copies of itself is not as difficult to imagine as it seems at first, and it only had to arise once. Think of the replicator as a mould or template. Imagine it as a large molecule consisting of a complex chain of various sorts of building block molecules. The small building blocks were abundantly available in the soup surrounding the replicator. Now suppose that each building block has an affinity for its own kind. Then whenever a building block from out in the soup lands up next to a part of the replicator for which it has an affinity, it will tend to stick there. The building blocks that attach themselves in this way will automatically be arranged in a sequence that mimics that of the replicator itself. It is easy then to think of them joining up to form a stable chain just as in the formation of the original replicator. This process could continue as a progressive stacking up, layer upon layer. This is how crystals are formed. On the other hand, the two chains might split apart, in which case we have two replicators, each of which can go on to make further copies.

A more complex possibility is that each building block has affinity not for its own kind, but reciprocally for one particular other kind. Then the replicator would act as a template not for an identical copy, but for a kind of ‘negative’, which would in its turn remake an exact copy of the original positive. For our purposes it does not matter whether the original replication process was positive-negative or positive-positive, though it is worth remarking that the modern equivalents of the first replicator, the DNA molecules, use positive-negative replication. What does matter is that suddenly a new kind of ‘stability’ came into the world. Previously it is probable that no particular kind of complex molecule was very abundant in the soup, because each was dependent on building blocks happening to fall by luck into a particular stable configuration. As soon as the replicator was born it must have spread its copies rapidly throughout the seas, until the smaller building block molecules became a scarce resource, and other larger molecules were formed more and more rarely.

So we seem to arrive at a large population of identical replicas. But now we must mention an important property of any copying process: it is not perfect. Mistakes will happen. I hope there are no misprints in this book, but if you look carefully you may find one or two. They will probably not seriously distort the meaning of the sentences, because they will be ‘first generation’ errors. But imagine the days before printing, when books such as the Gospels were copied by hand. All scribes, however careful, are bound to make a few errors, and some are not above a little wilful ‘improvement’. If they all copied from a single master original, meaning would not be greatly perverted. But let copies be made from other copies, which in their turn were made from other copies, and errors will start to become cumulative and serious. We tend to regard erratic copying as a bad thing, and in the case of human documents it is hard to think of examples where errors can be described as improvements. I suppose the scholars of the Septuagint could at least be said to have started something big when they mistranslated the Hebrew word for ‘young woman’ into the Greek word for ‘virgin’, coming up with the prophecy: ‘Behold a virgin shall conceive and bear a son . . .’ Anyway, as we shall see, erratic copying in biological replicators can in a real sense give rise to improvement, and it was essential for the progressive evolution of life that some errors were made. We do not know how accurately the original replicator molecules made their copies. Their modern descendants, the DNA molecules, are astonishingly faithful compared with the most high-fidelity human copying process, but even they occasionally make mistakes, and it is ultimately these mistakes that make evolution possible. Probably the original replicators were far more erratic, but in any case we may be sure that mistakes were made, and these mistakes were cumulative.

As mis-copyings were made and propagated, the primeval soup became filled by a population not of identical replicas, but of several varieties of replicating molecules, all ‘descended’ from the same ancestor. Would some varieties have been more numerous than others? Almost certainly yes. Some varieties would have been inherently more stable than others. Certain molecules, once formed, would be less likely than others to break up again. These types would become relatively numerous in the soup, not only as a direct logical consequence of their ‘longevity’, but also because they would have a long time available for making copies of themselves. Replicators of high longevity would therefore tend to become more numerous and, other things being equal, there would have been an ‘evolutionary trend’ towards greater longevity in the population of molecules.

But other things were probably not equal, and another property of a replicator variety that must have had even more importance in spreading it through the population was speed of replication or ‘fecundity’. If replicator molecules of type A make copies of themselves on average once a week while those of type B make copies of themselves once an hour, it is not difficult to see that pretty soon type A molecules are going to be far outnumbered, even if they ‘live’ much longer than B molecules. There would therefore probably have been an ‘evolutionary trend’ towards higher ‘fecundity’ of molecules in the soup. A third characteristic of replicator molecules which would have been positively selected is accuracy of replication. If molecules of type X and type Y last the same length of time and replicate at the same rate, but X makes a mistake on average every tenth replication while Y makes a mistake only every hundredth replication, Y will obviously become more numerous. The X contingent in the population loses not only the errant ‘children’ themselves, but also all their descendants, actual or potential.

If you already know something about evolution, you may find something slightly paradoxical about the last point. Can we reconcile the idea that copying errors are an essential prerequisite for evolution to occur, with the statement that natural selection favours high copying-fidelity? The answer is that although evolution may seem, in some vague sense, a ‘good thing’, especially since we are the product of it, nothing actually ‘wants’ to evolve. Evolution is something that happens, willy-nilly, in spite of all the efforts of the replicators (and nowadays of the genes) to prevent it happening. Jacques Monod made this point very well in his Herbert Spencer lecture, after wryly remarking: ‘Another curious aspect of the theory of evolution is that everybody thinks he understands it!

To return to the primeval soup, it must have become populated by stable varieties of molecule; stable in that either the individual molecules lasted a long time, or they replicated rapidly, or they replicated accurately. Evolutionary trends toward these three kinds of stability took place in the following sense: if you had sampled the soup at two different times, the later sample would have contained a higher proportion of varieties with high longevity/fecundity/copying-fidelity. This is essentially what a biologist means by evolution when he is speaking of living creatures, and the mechanism is the same — natural selection.

Should we then call the original replicator molecules ‘living’? Who cares? I might say to you ‘Darwin was the greatest man who has ever lived’, and you might say ‘No, Newton was’, but I hope we would not prolong the argument. The point is that no conclusion of substance would be affected whichever way our argument was resolved. The facts of the lives and achievements of Newton and Darwin remain totally unchanged whether we label them ‘great’ or not. Similarly, the story of the replicator molecules probably happened something like the way I am telling it, regardless of whether we choose to call them ‘living’. Human suffering has been caused because too many of us cannot grasp that words are only tools for our use, and that the mere presence in the dictionary of a word like ‘living’ does not mean it necessarily has to refer to something definite in the real world. Whether we call the early replicators living or not, they were the ancestors of life; they were our founding fathers.

The next important link in the argument, one that Darwin himself laid stress on (although he was talking about animals and plants, not molecules) is competition. The primeval soup was not capable of supporting an infinite number of replicator molecules. For one thing, the earth’s size is finite, but other limiting factors must also have been important. In our picture of the replicator acting as a template or mould, we supposed it to be bathed in a soup rich in the small building block molecules necessary to make copies. But when the replicators became numerous, building blocks must have been used up at such a rate that they became a scarce and precious resource. Different varieties or strains of replicator must have competed for them. We have considered the factors that would have increased the numbers of favoured kinds of replicator. We can now see that less-favoured varieties must actually have become less numerous because of competition, and ultimately many of their lines must have gone extinct. There was a struggle for existence among replicator varieties. They did not know they were struggling, or worry about it; the struggle was conducted without any hard feelings, indeed without feelings of any kind. But they were struggling, in the sense that any mis-copying that resulted in a new higher level of stability, or a new way of reducing the stability of rivals, was automatically preserved and multiplied. The process of improvement was cumulative. Ways of increasing stability and of decreasing rivals’ stability became more elaborate and more efficient. Some of them may even have ‘discovered’ how to break up molecules of rival varieties chemically, and to use the building blocks so released for making their own copies. These proto-carnivores simultaneously obtained food and removed competing rivals. Other replicators perhaps discovered how to protect themselves, either chemically, or by building a physical wall of protein around themselves. This may have been how the first living cells appeared. Replicators began not merely to exist, but to construct for themselves containers, vehicles for their continued existence. The replicators that survived were the ones that built survival machines for themselves to live in. The first survival machines probably consisted of nothing more than a protective coat. But making a living got steadily harder as new rivals arose with better and more effective survival machines. Survival machines got bigger and more elaborate, and the process was cumulative and progressive.

Was there to be any end to the gradual improvement in the techniques and artifices used by the replicators to ensure their own continuation in the world? There would be plenty of time for improvement. What weird engines of self-preservation would the millennia bring forth? Four thousand million years on, what was to be the fate of the ancient replicators? They did not die out, for they are past masters of the survival arts. But do not look for them floating loose in the sea; they gave up that cavalier freedom long ago. Now they swarm in huge colonies, safe inside gigantic lumbering robots, sealed off from the outside world, communicating with it by tortuous {20} indirect routes, manipulating it by remote control. They are in you and in me; they created us, body and mind; and their preservation is the ultimate rationale for our existence. They have come a long way, those replicators. Now they go by the name of genes, and we are their survival machines.

The Conceit of Hindsight (Extract from The Ancestor’s Tale, by Richard Dawkins)

The boombastic introduction to The Ancestor’s Tale by Richard Dawkins. Evolution is a fascinating subject, and perhaps as universally misunderstood as relativity (even more perhaps, seeing just how many people mistakenly believe they correctly know about evolution). Never mind the water-tight arguments and the effortless logic, I just read and re-read this for the pleasure of how Dawkins puts his words together (and chooses which words to put in there in the first place; “Conceit” for eg. Just the PERFECT word for what is being explained).

The book is highly recommended as well.



‘History doesn’t repeat itself, but it rhymes.’


‘History repeats itself; that’s one of the things that’s wrong with history.’


History has been described as one damn thing after another. The remark can be seen as a warning against a pair of temptations but, duly warned, I shall cautiously flirt with both. First, the historian is tempted to scour the past for patterns that repeat themselves; or at least, following Mark Twain, to seek reason and rhyme for everything. This appetite for pattern affronts those who insist that, as Mark Twain will also be found to have said, ‘History is usually a random, messy affair’, going nowhere and following no rules. The second connected temptation is the vanity of the present: of seeing the past as aimed at our own time, as though the characters in history’s play had nothing better to do with their lives than foreshadow us. Under names that need not trouble us, these are live issues in human history and they arise with greater force, and no greater agreement, on the longer timescale of evolution. Evolutionary history can be represented as one damn species after another. But many biologists will join me in finding this an impoverished view. Look at evolution that way and you miss most of what matters. Evolution rhymes, patterns recur. And this doesn’t just happen to be so. It is so for well understood reasons: Darwinian reasons mostly, for biology, unlike human history or even physics, already has its grand unifying theory, accepted by all informed practitioners, though in varying  versions and interpretations. In writing evolutionary history I do not shrink from seeking patterns and principles, but I try to be careful about it.

What of the second temptation, the conceit of hindsight, the idea that the past works to deliver our particular present? The late Stephen Jay Gould rightly pointed out that a dominant icon of evolution in popular mythology, a caricature almost as ubiquitous as lemmings jumping over cliffs (and that myth is false too), is a shambling file of simian ancestors, rising progressively in the wake of the erect, striding, majestic figure of Homo sapiens sapiens: man as evolution’s last word (and in this context it always is man rather than woman); man as what the whole enterprise is pointing towards; man as a magnet, drawing evolution from the past towards his eminence.

There is a physicist’s version which is less obviously vainglorious and which I should mention in passing. This is the ‘anthropic’ notion that the very laws of physics themselves, or the fundamental constants of the universe, are a carefully tuned put-up job, calculated to bring humanity eventually into existence. It is not necessarily founded on vanity. It doesn’t have to mean that the universe was deliberately made in order that we should exist. It need mean only that we are here, and we could not be in a universe that lacked the capability of producing us. As physicists have pointed out, it is no accident that we see stars in our sky, for stars are a necessary part of any universe capable of generating us. Again, this does not imply that stars exist in order to make us. It is just that without stars there would be no atoms heavier than lithium in the periodic table, and a chemistry of only three elements is too impoverished to support life. Seeing is the kind of activity that can go on only in the kind of universe where what you see are stars.

But there is a little more that needs to be said. Granted the trivial fact that our presence requires physical laws and constants capable of producing us, the existence of such potent ground rules may still seem tantalisingly improbable. Depending upon their assumptions, physicists may reckon that the set of possible universes vastly outnumbers that subset whose laws and constants allowed physics to mature, via stars into chemistry and via planets into biology. To some, this means that the laws and constants must have been deliberately premeditated from the start (although it baffles me why anybody regards this as an explanation for anything, given that the problem so swiftly regresses to the larger one of explaining the existence of the equally fine-tuned and improbable Premeditator).

Other physicists are less confident that the laws and constants were free to vary in the first place. When I was little it was not obvious to me why five times eight had to give the same result as eight times five. I accepted it as one of those facts that grownups assert. Only later did I understand, perhaps through visualising rectangles, why such pairs of multiplications are not free to vary independently of one another. We understand that the circumference and the diameter of a circle are not independent, otherwise we might feel tempted to postulate a plethora of possible universes, each with a different value of n. Perhaps, argue some physicists such as the Nobel Prize-winning theorist Steven Weinberg, the fundamental constants of the universe, which at present we treat as independent of one another, will in some Grand Unified fullness of time be understood to have fewer degrees of freedom than we now imagine. Maybe there is only one way for a universe to be. That would undermine the appearance of anthropic coincidence.

Other physicists, including Sir Martin Rees, the present Astronomer Royal, accept that there is a real coincidence in need of explanation, and explain it by postulating many actual universes existing in parallel, mutually incommunicado, each with its own set of laws and constants. Obviously we, who find ourselves reflecting upon such things, must be in one of those universes, however rare, whose laws and constants are capable of evolving us.

The theoretical physicist Lee Smolin added an ingenious Darwinian spin which reduces the apparent statistical improbability of our existence. In Smolin’s model, universes give birth to daughter universes, which vary in their laws and constants. Daughter universes are born in black holes produced by a parent universe, and they inherit its laws and constants but with some possibility of small random change — ‘mutation’. Those daughter universes that have what it takes to reproduce (last long enough to make black holes, for instance) are, of course, the universes that pass on their laws and constants to their daughters. Stars are precursors to black holes which, in the Smolin model, are the birth events. So universes that have what it takes to make stars are favoured in this cosmic Darwinism. The properties of a universe that furnish this gift to the future are the self-same properties that incidentally lead to the manufacture of large atoms, including vital carbon atoms. Not only do we live in a universe that is capable of producing life. Successive generations of universes progressively evolve to become increasingly the sort of universe that, as a by-product, is capable of producing life.

The logic of the Smolin theory is bound to appeal to a Darwinian, indeed to anyone of imagination, but as for the physics I am not qualified to judge. I cannot find a physicist to condemn the theory as definitely wrong — the most negative thing they will say is that it is superfluous. Some, as we saw, dream of a final theory in whose light the alleged fine-tuning of the universe will turn out to be a delusion anyway. Nothing we know rules out Smolin’s theory, and he claims for it the merit — which scientists rate more highly than many laymen appreciate — of testability. His book is The Life of the Cosmos and I recommend it.

But that was a digression about the physicist’s version of the conceit of hindsight. The biologist’s version is easier to dismiss since Darwin, though harder before him, and it is our concern here. Biological evolution has no privileged line of descent and no designated end. Evolution has reached many millions of interim ends (the number of surviving species at the time of observation), and there is no reason other than vanity — human vanity as it happens, since we are doing the talking — to designate any one as more privileged or climactic than any other.

This doesn’t mean, as I shall continue to argue, that there is a total dearth of reasons or rhymes in evolutionary history. I believe there are recurring patterns. I also believe, though this is more controversial today than it once was, that there are senses in which evolution may be said to be directional, progressive and even predictable. But progress is emphatically not the same thing as progress towards humanity, and we must live with a weak and unflattering sense of the predictable. The historian must beware of stringing together a narrative that seems, even to the smallest degree, to be homing in on a human climax.

A book in my possession (in the main a good book, so I shall not name and shame it) provides an example. It is comparing Homo habilis (a human species, probably ancestral to us) with its predecessors the australopithecines.” What the book says is that Homo habilis was ‘considerably more evolved than the Australopithecines‘. More evolved? What can this mean but that evolution is moving in some pre-specified direction? The book leaves us in no doubt of what the presumed direction is. “The first signs of a chin are apparent.” ‘First’ encourages us to expect second and third signs, towards a ‘complete’ human chin. ‘The teeth start to resemble ours …’ As if those teeth were the way they were, not because it suited the habiline diet but because they were embarking upon the road towards becoming our teeth. The passage ends with a telltale remark about a later species of extinct human, Homo erectus:

Although their faces are still different from ours, they have a much more human look in their eyes. They are like sculptures in the making, ‘unfinished’ works.

In the making? Unfinished? Only with the unwisdom of hindsight. In excuse of that book it is probably true that, were we to meet a Homo erectus face to face, it might well look to our eyes like an unfinished sculpture in the making. But that is only because we are looking with human hindsight. A living creature is always in the business of surviving in its own environment. It is never unfinished — or, in another sense, it is always unfinished. So, presumably, are we.

The conceit of hindsight tempts us at other stages in our history. From our human point of view, the emergence of our remote fish ancestors from water to land was a momentous step, an evolutionary rite of passage. It was undertaken in the Devonian Period by lobe-finned fish a bit like modern lungfish. We look at fossils of the period with a pardonable yearning to gaze upon our forebears, and are seduced by a knowledge of what came later: drawn into seeing these Devonian fish as ‘halfway’ towards becoming land animals; everything about them earnestly transitional, bound into an epic quest to invade the land and initiate the next big phase of evolution. That is not the way it was at the time.
Those Devonian fish had a living to earn. They were not on a mission to evolve, not on a quest towards the distant future. An otherwise excellent book about vertebrate evolution contains the following sentence about fish which

ventured out of the water on to the land at the end of the Devonian Period and jumped the gap, so to speak, from one vertebrate class to another to become the first amphibians…

The ‘gap’ comes from hindsight. There was nothing resembling a gap at the time, and the ‘classes’ that we now recognise were no more separate, in those days, than two species. As we shall see again, jumping gaps is not what evolution does.

It makes no more sense (and no less) to aim our historical narrative towards Homo sapiens than towards any other modern species — Octopus vulgaris, say, or Panthera leo or Sequoia sempervirens. A historically minded swift, understandably proud of flight as self-evidently the premier accomplishment of life, will regard swiftkind — those spectacular flying machines with their swept-back wings, who stay aloft for a year at a time and even copulate in free flight — as the acme of evolutionary progress. To build on a fancy of Steven Pinker, if elephants could write history they might portray tapirs, elephant shrews, elephant seals and proboscis monkeys as tentative beginners along the main trunk road of evolution, taking the first fumbling steps but each — for some reason — never quite making it: so near yet so far. Elephant astronomers might wonder whether, on some other world, there exist alien life forms that have crossed the nasal rubicon and taken the final leap to full proboscitude.

We are not swifts nor elephants, we are people. As we wander in imagination through some long-dead epoch, it is humanly natural to reserve a special warmth and curiosity for whichever otherwise ordinary species in that ancient landscape is our ancestor (it is an intriguingly unfamiliar thought that there is always one such species). It is hard to deny our human temptation to see this one species as ‘on the main line’ of evolution, the others as supporting cast, walk-on parts, sidelined cameos. Without succumbing to that error, there is one way to indulge a legitimate human-centrism while respecting historical propriety. That way is to do our history backwards, and it is the way of this book.

Backward chronology in search of ancestors really can sensibly aim towards a single distant target. The distant target is the grand ancestor of all life, and we can’t help converging upon it no matter where we start — elephant or eagle, swift or salmonella, wellingtonia or woman. Backward chronology and forward chronology are each good for different purposes. Go backwards and, no matter where you start, you end up celebrating the unity of life. Go forwards and you extol diversity. It works on small timescales as well as large. The forward chronology of the mammals, within their large but still limited timescale, is a story of branching diversification, uncovering the richness of that group of hairy warmbloods. Backward chronology, taking any modern mammal as our starting point, will always converge upon the same unique ur-mammal: shadowy, insectivorous, nocturnal contemporary of the dinosaurs. This is a local convergence. A yet more local one converges on the most recent ancestor of all rodents, who lived somewhere around the time the dinosaurs went extinct. More local still is the backward convergence of all apes (including humans) on their shared ancestor, who lived about 18 million years ago. On a larger scale, there is a comparable convergence to be found if we work backwards from any vertebrate, an even larger convergence working backwards from any animal to the ancestor of all animals. The largest convergence of all takes us from any modern creature — animal, plant, fungus or bacterium — back to the universal progenitor of all surviving organisms, probably resembling some kind of bacterium.

I used ‘convergence* in the last paragraph, but I really want to reserve that word for a completely different meaning in forward chronology. So for the present purpose I shall substitute ‘confluence’ or, for reasons that will make sense in a moment, ‘rendezvous’. I could have used ‘coalescence’, except that, as we shall see, geneticists have already adopted it in a more precise sense, similar to my ‘confluence’ but concentrating on genes rather than species. In a backward chronology, the ancestors of any set of species must eventually meet at a particular geological moment. Their point of rendezvous is the last common ancestor that they all share, what I shall call their ‘Concestor’:* the focal rodent or the focal mammal or the focal vertebrate, say. The oldest concestor is the grand ancestor of all surviving life.

We can be very sure there really is a single concestor of all surviving life forms on this planet. The evidence is that all that have ever been examined share (exactly in most cases, almost exactly in the rest) the same genetic code; and the genetic code is too detailed, in arbitrary aspects of its complexity, to have been invented twice. Although not every species has been examined, we already have enough coverage to be pretty certain that no surprises — alas —await us. If we now were to discover a life form sufficiently alien to have a completely different genetic code, it would be the most exciting biological discovery in my adult lifetime, whether it lives on this planet or another. As things stand, it appears that all known life forms can be traced to a single ancestor which lived more than 3 billion years ago. If there were other, independent origins of life, they have left no descendants that we have discovered. And if new ones arose now they would swiftly be eaten, probably by bacteria.

The grand confluence of all surviving life is not the same thing as the origin of life itself. This is because all surviving species presumably share a concestor who lived after the origin of life: anything else would be an unlikely coincidence, for it would suggest that the original life form immediately branched and more than one of its branches survive to this day. Current textbook orthodoxy dates the oldest bacterial fossils at about 3.5 billion years ago, so the origin of life must at least be earlier than that. If we accept a recent disputation* of these apparently ancient fossils, our dating of the origin of life might be a bit more recent. The grand confluence — the last common ancestor of all surviving creatures — could pre-date the oldest fossils (it didn’t fossilise) or it could have lived a billion years later (all but one of the other lineages went extinct).

Given that all backward chronologies, no matter where they start, culminate in the one grand confluence, we can legitimately indulge our human preoccupation and concentrate upon the single line of our own ancestors. Instead of treating evolution as aimed towards us, we choose modern Homo sapiens as our arbitrary, but forgivably preferred, starting point for a reverse chronology. We choose this route, out of all possible routes to the past, because we are curious about our own great grancestors. At the same time, although we need not follow them in detail, we shall not forget that there are other historians, animals and plants belonging to other species, who are independently walking backwards from  their separate starting points, on separate pilgrimages to visit their own ancestors, including eventually the ones they share with us. If we retrace our own ancestral steps, we shall inevitably meet these other pilgrims and join forces with them in a definite order, the order in which their lineages rendezvous with ours, the order of ever more inclusive cousinship.

Pilgrimages? Join forces with pilgrims? Yes, why not? Pilgrimage is an apt way to think about our journey to the past. This book will be cast in the form of an epic pilgrimage from the present to the past. All roads lead to the origin of life. But because we are human, the path we shall follow will be that of our own ancestors. It will be a human pilgrimage to discover human ancestors. As we go, we shall greet other pilgrims who will join us in strict order, as we reach the common ancestors we share with them. The first fellow pilgrims we shall greet, some 5 million years ago, deep in Africa where Stanley memorably shook hands with Livingstone, are the chimpanzees. The chimpanzee and bonobo pilgrims will already have joined forces with each other ‘before’ we greet them. And here we have a little linguistic trickiness which I must face at the outset, before it dogs us any further. I placed ‘before’ in inverted commas because it could confuse. I used it to mean before in the backwards sense — ‘before, in the course of the pilgrimage to the past’. But that of course means after in the chronological sense, the exact opposite meaning! My guess is that no reader was confused in this particular case, but there will be other instances where the reader’s patience may be tested. While writing this book I tried the experiment of coining a new preposition, tailored to the peculiar needs of a backward historian. But it didn’t fly. Instead, I shall adopt the convention of ‘before’ in inverted commas. When you see ‘before’, remember that it really means after! When you see before, it really means before. And the same for ‘after’ and after, mutatis mutandis.

The next pilgrims with whom we shall rendezvous as we push back along our journey are gorillas, then orang utans (quite a lot deeper into the past, and probably no longer in Africa). Next we shall greet gibbons, then Old World monkeys, then New World monkeys, then various other groups of mammals… and so on until eventually all the pilgrims of life are marching together in one single backward quest for the origin of life itself. As we push on back, there will come a time when it is no longer meaningful to name the continent in which a rendezvous takes place: the map of the world was so different, because of the remarkable phenomenon of plate tectonics. And further back still, all rendezvous take place in the sea.

It is a rather surprising fact that we human pilgrims pass only about 40 rendezvous points in all, before we hit the origin of life itself. At each of the 40 steps we shall find one particular shared ancestor, the Concestor, which will bear the same labelling number as the Rendezvous. For example, Concestor 2, whom we meet at Rendezvous 2, is the most recent common ancestor of gorillas on the one hand and {humans + {chimpanzees + bonobos}} on the other. Concestor 3 is the most recent common ancestor of orang utans and {{humans + {chimpanzees + bonobos}} + gorillas}. Concestor 39 is the grand ancestor of all surviving life forms. Concestor o is a special case, the most recent ancestor of all  surviving humans.

We shall be pilgrims, then, sharing fellowship ever more inclusively with other pilgrim bands, which also have been swelling on their own way to their rendezvous with us. After each meeting, we continue together on the high road back to our shared Archaean goal, our ‘Canterbury’. There are other literary allusions, of course, and I almost made Bunyan my model and Pilgrim’s Regress my title. But it was to Chaucer’s Canterbury Tales that I and my research assistant Yan Wong kept returning in our discussions, and it seemed increasingly natural to think of Chaucer throughout this book.

Unlike (most of) Chaucer’s pilgrims, mine do not all set out together, although they do set off at the same time, the present. These other pilgrims aim towards their ancient  Canterbury from different starting points, joining our human pilgrimage at various rendezvous along the road. In this respect, my pilgrims are unlike those who gathered in London’s Tabard Inn. Mine are more like the sinister canon and his understandably disloyal yeoman, who joined Chaucer’s pilgrims at Boughton-under-Blee, five miles short of Canterbury. Following Chaucer’s lead, my pilgrims, which are all the different species of living creature, will have the opportunity to tell tales along the way to their Canterbury which is the origin of life. It is these tales that form the main substance of this book.

Dead men tell no tales, and extinct creatures such as trilobites are deemed not to be pilgrims capable of telling them, but I shall make exceptions of two special classes. Animals such as the dodo, which survived into historical times and whose DNA is still available to us, are treated as honorary members of the modern fauna setting off on pilgrimage at the same time as us, and joining us at some particular rendezvous. Since we are responsible for their so recent extinction, it seems the least we can do. The other honorary pilgrims,
exceptions to the rule that dead men tell no tales, really are men (or women). Since we human pilgrims are directly seeking our own ancestors, fossils that might plausibly be considered candidates for being our ancestors are deemed members of our human pilgrimage and we shall hear tales from some of these ‘shadow pilgrims’, for example the Handyman, Homo habilis.

I decided it would be twee to let my animal and plant tale-tellers speak in the first person singular, and I shall not do so. Save for occasional asides and prefatory remarks, Chaucer’s pilgrims don’t either. Many of Chaucer’s Tales have their own Prologue, and some have an Epilogue too, all written in Chaucer’s own voice as narrator of the pilgrimage. I shall occasionally follow his example. As with Chaucer, an epilogue may serve as a bridge from one tale to the next.  Before his Tales begin, Chaucer has a long General Prologue in which he sets out his cast list: the professions and in some cases the names of the pilgrims who are about to set off from the tavern. Instead, I shall introduce new pilgrims as they join us. Chaucer’s jovial host offers to guide the pilgrims, and encourages them to tell their tales to while away the journey. In my role as host I shall use the General Prologue for some preparatory remarks about methods and problems of reconstructing evolutionary history, which must be faced and solved whether we do our history backwards or forwards.

Then we shall embark on our backwards history itself. Although we shall concentrate on our own ancestors, noting other creatures usually only when they join us, we shall from time to time look up from our road and remind ourselves that there are other pilgrims on their own more or less independent routes to our ultimate destination. The numbered rendezvous milestones, plus a few intermediate markers necessary to consolidate the chronology, will provide the scaffolding for our journey. Each will mark a new chapter, where we halt to take stock of our pilgrimage, and maybe listen to a tale or two. On rare occasions, something important happens in the world around us, and then our pilgrims may pause briefly to reflect on it. But, for the most part, we shall mark our progress to the dawn of life by the measure of those 40 natural milestones, the trysts that enrich our pilgrimage.